

Spatial Sound Mapping via Constrained Spectral Conditioning and CLEAN-SC

Taylor B. Spalt

Spring 2015 Acoustics Technical Working Group Meeting

Wednesday, April 22, 2015 NASA LaRC, Hampton, VA

Problem Statement

• Spatially map sound with

qualitative/quantitative accuracy

- Microphone arrays allow for spatial separation of distinct sources
- Many existing processing methods

Downstream view of Hybrid Wing Body model inverted on test stand with phased microphone array overhead

Existing Spatial Sound Mapping Methods in Aeroacoustics

- <u>Cross-spectral</u>
 - \circ Beamforming
 - O CLEAN-PSF [Högborn 1974]
 - Spectral Estimation Method [Blacodon & Élias 2003]
 - O DAMAS and DAMAS-C [Brooks & Humphreys 2004, 2006]
 - CLEAN-SC [Sijtsma 2007]
 - Functional Beamforming [Dougherty 2014]

<u>Eigenspace</u>

- Generalized Inverse [Suzuki 2008]
- Orthogonal Beamforming [Sarradj 2010]

Wavespace

• Wavespace Deconvolution [Bahr & Cattafesta 2012]

Research Objectives

■<u>Use:</u>

Single-channel filtering based on user-defined spatial constraints

■<u>As:</u>

Building-block for existing spatial mapping techniques

■ <u>For:</u>

➤Qualitative/quantitative improvement in accuracy

NASA

Microphone Array Filtering

• Goal: Filter channel data for more accurate spatial sound estimation

Modified Wiener-Hopf Eq. for Spatial Filtering

- <u>Combine</u>: Optimal, least-squares filtering of Wiener-Hopf Eq. + Spatial filtering
- Only constraint = User-defined phase
- Modified weight vector \rightarrow Filters + Prevents targeted signal cancellation

Constrained Spectral Conditioning (CSC)

- Conditioned Spectral Analysis¹ with modified Wiener-Hopf Eq. (WB) becomes CSC²
- Optimal, spatially-constrained, least-squares filtering for Fourier Transforms of microphone outputs

Basic Spatial Sound Mapping

FDBF Beamwidth and Sidelobes: Simulated Point Source

• <u>Point source "measured" with SADA1</u>: 60" from array face, f = 10 kHz, SNR = 20 dB

FDBF Beamwidth & Highest Sidelobe Level vs. Frequency

• CSC performance dependent on SNR & frequency

CSC Observations

- Constrained Spectral Conditioning (CSC)
 - Single-channel processing → <u>Building-block for existing algorithms</u> as it processes the Fourier Transforms of microphone outputs
 - Uses only relative phase differences as constraints
- CSC success dependent on:
 - Frequency
 - Source field
 - Solid angle
 - Microphone layout
 - Signal-to-Noise Ratio (SNR)

CSC Observations, cont.

- CSC output datasets ("CSC-CSMs") are estimates
- FDBF using CSC-CSMs
 - Non-integrateable (due to inaccuracies)
 - Non-linear \rightarrow Cannot be deconvolved "easily"

>Modified approach needed for accurate spatial sound mapping

Advanced Spatial Sound Mapping via CSM Decomposition

• CLEAN-PSF¹

Advanced Spatial Sound Mapping via CSM Decomposition, cont.

• CLEAN-CSC¹

ate	$Y^{i}_{\vec{s}} = \left(\frac{1}{M^{2}}\right) e^{T}_{\vec{s}} \widehat{G}^{i} e_{\vec{s}}, \vec{s} \in \vec{S}$	FDBF to locate max location on map
Iter	$\widehat{\boldsymbol{G}}^{i+1} = \widehat{\boldsymbol{G}}^{i} - \varphi \boldsymbol{Y}_{\overline{\boldsymbol{s}}_{max},CSC} \Big[\widehat{\boldsymbol{G}}_{\overline{\boldsymbol{s}}_{max},CSC} \Big]$	Subtract CSM estimate
	Stop if: $\sum_{i=1}^{n} \widehat{G}^{i} \geq \sum_{i=1}^{n} \widehat{G}^{i-1} $	Iteration stop criterion
	$Y_{CLEAN-CSC} = \varphi \sum_{i=1}^{I} Y_{\vec{s}_{max},CSC}$	Output source map

- <u>Pros</u>
 - Higher location/level accuracy than
 FDBF
 - $\circ~$ Sidelobe discrimination
 - $\circ~$ Does not use PSF magnitudes

• <u>Cons</u>

- $\circ~$ CSC-CSMs have inaccuracies
- PSF phase still used
- Cannot take advantage of "uncovered" information

Advanced Spatial Sound Mapping via CSM Decomposition, cont.

• CLEAN-SC¹

- <u>Pros</u>
 - Adaptively defines CSM estimate magnitudes/phases
 - Takes advantage of "uncovered" information
- <u>Cons</u>
 - \circ No sidelobe discrimination
 - Multiple/distributed sources bias
 CSM estimate
 - Stronger sources bias weaker sources
 - $\circ~$ Inaccurate for coherent sources

CLEAN-CSC + CLEAN-SC \rightarrow CLEAN-CSC-SC¹

- CSC \rightarrow FDBF and CSM at max locations
- CLEAN-SC \rightarrow Further decompose CSC-CSM \rightarrow CSC-SC-CSM
 - Improves CSC-CSM magnitude estimates
 - Corrects deviations in initial phase definitions
- CLEAN-SC only used once original CSM is sufficiently decomposed
 - Improves dynamic range

Simulation: Modified PSF, Incoherent Sources

• <u>467 point sources "measured" with JEDA1</u>: 72" from array face, f = 15 kHz, SNR = 20 dB

Simulation: Modified PSF, Incoherent Sources, cont.

Preliminary Jet Noise Results

JEDA (left) positioned at 90° with respect to the jet exit plane in the JNL.

- Single-stream, convergent nozzle
- Exit diameter 2.67"
- Supersonic, cold jet at Mach 1.48
- Wind tunnel co-flow at Mach 0.1
- Array ("JEDA") 6 ft from jet centerline

Preliminary Jet Noise Results, cont.

• No CSM Diagonal Removal, No CSM Weighting

32 kHz 1/3 oct, Mean Array Single Mic level = 108.3 dB

NASA

CSC Conclusions

- Building block for existing algorithms
- Improves result accuracy under incoherent source conditions
- Not "plug-and-play" for advanced spatial mapping algorithms

CLEAN-CSC-SC Conclusions

- More qualitatively/quantitatively accurate than CLEAN-SC for incoherent sources
- More analysis needed when source coherence exists

Acknowledgements

- This work was funded under:
 - NASA Project # NNL08AA00B
 - NASA Pathways Program
- This work would not have been possible without the support of: O Dr. Chris Fuller
 - $\odot\,\text{Dr.}$ Tom Brooks
 - \odot Dr. Charlotte Whitfield
 - LaRC Aeroacoustics Branch
 - \odot National Institute of Aerospace

Backup Slides

CLEAN-CSC-SC¹

 Spatial sound mapping via decomposition of the initial CSM using CSC² and CLEAN-SC³

¹Spalt et al. 2015 ²Spalt 2014 ³Sijtsma 2007

$$\begin{aligned} \mathbf{Y}_{\overline{s}}^{i} &= \left(\frac{1}{M^{2}}\right) e_{\overline{s}}^{T} \widehat{G}^{i} e_{\overline{s}}, \quad \overline{s} \in \overline{S} \\ \mathbf{Y}_{\overline{s}_{max},CSC} &= \left(\frac{1}{M^{2}}\right) e_{\overline{s}_{max}}^{T} \widehat{G}_{\overline{s}_{max},CSC} e_{\overline{s}_{max}} \\ \mathbf{Y}_{\overline{s}_{max},CSC} &= \left(\frac{1}{M^{2}}\right) e_{\overline{s}_{max}}^{T} \widehat{G}_{\overline{s}_{max},CSC} e_{\overline{s}_{max}} \\ \mathbf{h}_{\overline{s}_{max},CSC} &= \left(\frac{1}{\sqrt{1 + w_{\overline{s}_{max}}^{T} H w_{\overline{s}_{max}}}}\right) \frac{\widehat{G}_{\overline{s}_{max},CSC} w_{\overline{s}_{max}} \\ \overline{Y}_{\overline{s}_{max},CSC} \\ \overline{G}_{\overline{s}_{max},CSC} &= \left(\frac{1}{\sqrt{1 + w_{\overline{s}_{max}}^{T} H w_{\overline{s}_{max}}}}\right) \frac{\widehat{G}_{\overline{s}_{max},CSC} w_{\overline{s}_{max}} \\ \overline{Y}_{\overline{s}_{max},CSC} \\ \overline{G}_{\overline{s}_{max},CSC} &= \left(\frac{1}{\sqrt{1 + w_{\overline{s}_{max}}^{T} H w_{\overline{s}_{max}}}}\right) \frac{\widehat{G}_{\overline{s}_{max},CSC} w_{\overline{s}_{max}} \\ \overline{Y}_{\overline{s}_{max},CSC} \\ \overline{G}_{\overline{s}_{max},CSC} &= \left(\frac{1}{\sqrt{1 + w_{\overline{s}_{max}}^{T} H w_{\overline{s}_{max}}}}\right) \frac{\widehat{G}_{\overline{s}_{max},CSC} \\ \overline{Y}_{\overline{s}_{max},CSC} \\ \overline{G}_{\overline{s}_{max},CSC} &= \left(\frac{1}{\sqrt{1 + w_{\overline{s}_{max}}^{T} H w_{\overline{s}_{max}}}}\right) \frac{\widehat{G}_{\overline{s}_{max},CSC} \\ \overline{Y}_{\overline{s}_{max},CSC} \\ \overline{G}_{\overline{s}_{max},CSC} &= \left(\frac{1}{\sqrt{1 + w_{\overline{s}_{max}}^{T} H w_{\overline{s}_{max}}}}\right) \frac{\widehat{G}_{\overline{s}_{max},CSC} \\ \overline{G}_{\overline{s}_{max},CSC} &= \left(\frac{1}{|\widehat{G}_{\overline{s}_{max},CSC}| < |\widehat{G}^{i}| \\ \widehat{G}_{\overline{s}_{max},CSC}| < |\widehat{G}^{i}| \\ \overline{G}_{\overline{s}_{max},CSC}| < |\widehat{G}^{i}| \\ \overline{G}_{\overline{s}_{max},CSC}| \\ \overline{G}_{\overline{s}_{max},CSC}| &= \left(\frac{1}{|\widehat{G}_{\overline{s}_{max},CSC}| < |\widehat{G}^{i}| \\ \overline{G}_{\overline{s}_{max},CSC}| \\ \overline{G$$

Outline

- 1. Introduction
- 2. Research Methodology
- 3. Simulated Data Analysis
- 4. Experimental Data Results
- 5. Contributions
- 6. Future Work

CSC Extension to Full Array

- *Optimum reference channel for use in arrays*:
 - 1. Maximize undesired signal cancellation
 - 2. Prevent amplification of noise

$$m'_{0}(m, \vec{s}) = \underline{max}|WB| \leq 1$$
$$m' = 1 \rightarrow M$$
$$m' \neq m$$

CSC Iterative Processing Algorithm

- *Stop if*:
 - 1. Processed channel's magnitude > channel's initial magnitude
 - 2. Coherent signal between channels \leq noise floor between channels

Undesired Signal Cancellation via Spatial Filtering

- Generalized Sidelobe Canceller (GSC)^{1,2}
 - Filtering method designed to attenuate all signal except that from a user-defined point in space/direction
 - Filtering performed on the synthesized array data

Undesired Signal Cancellation via Spatial Filtering, cont.

• Modified GSC¹

*****"Background Subtraction" for CSC*

$$\hat{G}_{mm,background\ sub} = \hat{G}_{mm,source+flow} - \hat{G}_{mm,flow}$$
$$m = 1 \to M$$

$$CH_m \rightarrow CH_m \sqrt{\frac{\hat{G}_{mm,background sub}}{\hat{G}_{mm,source+flow}}}$$