

Simulation of Rotorcraft Fly-In Noise

Stephen A. Rizzi Aeroacoustics Branch NASA Langley Research Center

Andrew Christian Structural Acoustics Branch NASA Langley Research Center

Spring 2015 Acoustics Technical Working Group Meeting April 21, 2015

Outline

- Motivation
- Objective and Approach
- Source Signature Generation
- Source Noise Synthesis
- Simulated Propagation
- Remarks

Motivation

- Rotorcraft noise can be heard over great distances
 - Can lead to annoyance and detection at greater distances than higher altitude fixed wing aircraft
- Sound jury tests often used to assess human response, but
 - Sound at observer unsteady due to source and propagation
 - Exact reproduction is not possible

<u>Objective</u>

 Develop means of creating salient features of rotorcraft fly-in noise for human subject tests conducted in a controlled laboratory setting

<u>Approach</u>

- Synthesize steady source noise pressure time histories using signal blade passage signatures from main and tail rotors
 - Focus is on long-range detection, so we are concerned with low emission angles, not overhead flyovers
- Propagate source noise to observer location according to some prescribed scenario. Effects include –
 - Atmospheric absorption
 - Spreading loss
 - Doppler simulation
 - Ground plane simulation

Test Vehicle

5

Airbus/Eurocopter AS350B

- Main rotor
 - 3 blades
 - 35-ft. 1-in diameter
 - 19.5 Hz BPF
- Tail rotor blade
 - 2 blades
 - 104 Hz BPF

[Source: NASA]

NASA

Source Signature Generation from Flight Test Data

- Back-propagate to source
 - Reverse spreading loss
 - De-Dopplerize via fractional delay line
 - Ignore atmospheric absorption since close range and low frequency

- Segment at emission angles such that signal is stationary
 - Slice and block align at main rotor BPF.
 Perform synchronous time average.
 - Subtract time averaged main rotor from original record.
 - Slice and block align at tail rotor BPF.
 Perform synchronous time average.

Source Signature Generation

Source Noise Synthesis

Data is provided at 10 kHz sampling rate. This must be changed to 44.1 kHz for reproduction.

- Take FFT of each main and tail rotor record
- Each point in the FFT represents the magnitude and phase of the BPF and its harmonics

16° elevation, 180° azimuth angle (nose)

Source Noise Synthesis

Data is provided at 10 kHz sampling rate. This must be changed to 44.1 kHz for reproduction.

- Take FFT of each main and tail rotor record
- Each point in the FFT represents the magnitude and phase of the BPF and its harmonics
- Synthesize long pressure time histories of main and tail rotors at audio sampling rate of 44.1 kHz.

$$p(t) = \sum_{i=1}^{N} A_i \cos\left(2\pi f'_i t + \varphi_i\right)$$

 f_i' are harmonics of the BPF which have been adjusted for crab angle (see next slide)

Very long source noise records are synthesized and propagated to generate pseudo-recordings which serve as test stimuli.

Source Noise Synthesis

Simulated Propagation

- Propagation processing modifies the synthesized source pressure time histories and generates a pseudo-recording at the desired observer position
 - The pseudo-recording is what a microphone would have recorded at the observer position, hence its name.
- Propagation processing applies 4 physical models for
 - a) Absolute time delay
 - b) Spherical spreading loss
 - c) Atmospheric absorption
 - d) Ground attenuation

Ground Attenuation

Apply range and angle-dependent filter according to a specified ground plane impedance:

Simulated Propagation

13

Simulated Propagation

- Change in ground attenuation is a function of frequency and distance
- Can't reproduce with a simple gain change

Example Pseudo-Recording

Scenario:

- 100 ft AGL straight & level, 105 kt
- Ground: Grass
- Observer: 4 ft
- Atmosphere: Uniform

Note:

 Monotonic increase in rate of change of sound pressure with increasing time. $\begin{bmatrix} 0.1 \\ 0 \\ -0.1 \\ -0.2 \\ -0.2 \\ -0.3 \\ -0.4 \\ -0.5 \\ -0.6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ Emission Ground Range [mi]$

16° elevation, 180° azimuth angle (nose)

- Method developed for simulation of low altitude rotorcraft fly-in noise
 - Source noise synthesized from single blade passage of main and tail rotors at low emission angles. Data may be obtained from flight tests or predictions (not shown).
 - Inclusion of spherical correction in ground attenuation model has large effect on amplitude and spectral content of received signal.
- This capability has been used to measure human response in the controlled laboratory environment of the Langley Exterior Effects Room.