PDV as a Diagnostic Tool for Separation Mechanisms, Particle Impact, and Hypervelocity Testing

Daniel Wentzel
Project Manager
NASA JSC – White Sands Test Facility
Outline

• Purpose
• WSTF Capabilities
• WSTF PDV Development
• NASA Applications of PDV
• Lessons Learned
• Questions
Acknowledgements

- Tim Gallus
- Brandon Maese
- Chris Keddy
- Sonny Gallegos
- Adam Iverson
- Ted Strand
- David Holtkamp
- Dan Dolan
- NKT Photonics
- Brook Jilek
- Steve Morra Third Millennium Engineering
Purpose

Past

Present and Future
What WSTF Does

Our mission is to provide the expertise and infrastructure to test and evaluate materials, components, and propulsion systems to enable the safe exploration and use of space

- Rocket Propulsion Testing and Evaluation
- Oxygen Systems Testing and Analysis
- Propellants and Aerospace Fluids Testing and Analysis
- Hypervelocity Impact Testing
- Composite Pressure Systems Testing and Analysis

http://www.nasa.gov/centers/wstf/home/index.html
PDV Development

• 4-channel system
 – Capable of up to 10 km/s

• 8-channel/20-channel system
 – Capable of lower speed measurements (300 m/s)
 – Modular
 – Multiplexed Data
4-Channel Heterodyne System

- NKT Photonics Koheras Adjustik™ Lasers
- EigenLight OPMs
- Thorlabs Fiber Components
- Discovery Semiconductor Lab Buddy photo-detectors
- Tektronix Oscilloscope
8-Channel Heterodyne System

- NKT Photonics Koheras Adjustik™ Lasers
- NKT Photonics Amplifier
- TME Receivers (Discovery Semiconductors PIN)
- Thorlabs Fiber Components
- OZ Optics Probes
- Tektronix Oscilloscopes
20-Channel Heterodyne System

- NKT Photonics ACOUTIK Mux
 - Modular Koheras BASIK™ lasers
 - Multiple matched ITU Bands (30, 32, 34, 36)
- NKT Photonics Amplifier
- NSTec Multiplexing Unit
- TME Receivers (Discovery Semiconductors PIN)
- Thorlabs Fiber Components
- OZ Optics Probes
- Tektronix Oscilloscopes
Applications For PDV

• Separation Mechanisms

• Particle Impact

• Hypervelocity Impact Testing
What Are Frangible Joints

Patient US8695473 B2 also published as US20130233161 A1

https://vibrationdata.wordpress.com/2012/09/04/pyrotechnic-shock-characterization-testing/
These events result in several centimeters of deflection and several milliseconds of movement; however, information is needed on the sub-microsecond level.
Why Understand Frangible Joints

• February 24, 2009
 – The Orbiting Carbon Observatory satellite mission
 – Loss of Mission

• March 4, 2011
 – The Glory spacecraft satellite mission
 – Loss of Mission

• As a result of these failures the reliability and functionality of frangible joints have been called into question and an investigate by the NASA Engineering and Safety Center (NESC) has been initiated.

• Frangible Joints are in the designs proposals for manned space flight missions.
Frangible Joints

• Test program was designed to be both empirical and computational
 – How well do models predict the physics of a frangible joint?

• Multi-factor designed experiment
 – Defensible data that shows statistical significance in findings.

• What Effect Joints Performance/Reliability
Frangible Joints

• Potential Factors Affecting Performance
 – Design Features (Tolerance and Choice)
 – Core Load
 – Symmetry
 – Boundary Conditions
 – Environment
 – Joint Type
Probe Locations

• Locations of PDV probes were very important
 – Physical Reasons (Computational Understanding)
 – Statistical Reasons (Empirical Understanding)
• Locations were chosen just below the notch of the frangible joint and along the mid-line of the mild detonating fuse (MDF)
• Certain channels were held constant throughout the program as design of experiment channels.
• We had very good luck with OZ Optics probes.
• Locations were held constant for approximately 50% of the channels.
Custom Probe

Probe design was by NSTec

<table>
<thead>
<tr>
<th>Spots</th>
<th>inches</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>0.031</td>
<td>0.785</td>
</tr>
<tr>
<td>1-3</td>
<td>0.062</td>
<td>1.569</td>
</tr>
<tr>
<td>1-4</td>
<td>0.093</td>
<td>2.354</td>
</tr>
<tr>
<td>1-5</td>
<td>0.124</td>
<td>3.138</td>
</tr>
<tr>
<td>1-6</td>
<td>0.154</td>
<td>3.923</td>
</tr>
<tr>
<td>1-7</td>
<td>0.185</td>
<td>4.707</td>
</tr>
<tr>
<td>1-8</td>
<td>0.216</td>
<td>5.492</td>
</tr>
<tr>
<td>1-9</td>
<td>0.247</td>
<td>6.277</td>
</tr>
<tr>
<td>1-10</td>
<td>0.278</td>
<td>7.061</td>
</tr>
<tr>
<td>1-11</td>
<td>0.309</td>
<td>7.846</td>
</tr>
<tr>
<td>1-12</td>
<td>0.340</td>
<td>8.630</td>
</tr>
</tbody>
</table>
Data Examples

First Multiplexed Data

We got better with practice
Particle Impact

• In oxygen environments of elevated concentration, temperature, and pressure
 – Materials are easier to ignite and burn
 – Burn more vigorously
• Reduce risk by removing/reducing a leg of the fire triangle which is often heat sources
• Particle impact is a common ignition mechanism source of metals in oxygen systems.
Particle Impact

Subsonic Nozzle (Chamber Body)

Gas Flow

Laser Probe
(to PDV chassis)

30°

Particle Flow
(with gas flow)

Sample Inlet Spacer

Target
(Sample Plate)

Outlet Orifice

Chamber End Cap

101 m/sec
(Doppler Shifting)

500
1600
2800
3000

Time [µs]

NASA
Hypervelocity

- How do materials respond to impact from space debris?
- How do you validate gun codes?
Hypervelocity

http://orbitaldebris.jsc.nasa.gov/photogallery/beehives.html
Lessons Learned

• Rodents Like fiber (not the dietary kind either)
Lessons Learned

• Unknowns can be painful when they lead to lost data like, laser amplifiers do not like low input power

![Diagram of Koheras BOOSTIK™](image)

<table>
<thead>
<tr>
<th>Seed Laser</th>
<th>Optical Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifier</td>
<td>Optical Input</td>
</tr>
</tbody>
</table>

250 mW output at 1550 nm

Figure 1 (Diagram of Koheras BOOSTIK™)
Lessons Learned

• System uncertainty can be difficult to quantify
 – Stacked probes may not be parallel
 – Center of probes are not necessarily the center of the housing
 – Small angle error becomes larger linear error at long probe stand off distances
Lessons Learned

• Multiplexing is not trivial
 – Multiple ITU bands into an EDFA lead to preferential amplification.
 – Drifting baseline caused by tunable cavity

• Cleanliness, Cleanliness, Cleanliness
PDV’s Future at NASA

• Other Pyrotechnic Devices
 – Frangible Nuts
 – Pyro-shock testing

• Opportunities to further develop the technique through collaboration
Questions
Back Up
Contact Information

Daniel Wentzel
Project Manager
Materials and Components Laboratories Office
NASA Johnson Space Center White Sands Test Facility
Phone: (575) 524-5038
daniel.j.wentzel@nasa.gov