The influence of sea ice on Arctic low cloud properties and radiative effects

Patrick C. Taylor
NASA Langley Research Center
Climate Science Branch
7 May 2015
patrick.c.taylor@nasa.gov

Acknowledgements: Seiji Kato, Kuan-Man Xu, Noel Baker, and Ming Cai

Picture Credit: NSIDC website
Arctic Sea Ice is Melting!

Slope: -13.7 (+/- 3.0) % per decade

Credit: Nat’l Snow and Ice Data Center (http://nsidc.org)
Arctic Low Cloud Processes

The influence of the surface type on the cloud properties implies an interaction between clouds and sea ice that may significantly influence Arctic climate change.

Morrison et al. (2012; Nature Geoscience)
Sea ice-Cloud Interaction: Some Modeling Evidence

Cloud base and LWC are higher in Cloud Resolving Model simulations with anomalously low sea ice.

Barton and Veron (2012)

Surface radiative forcing due to sea ice-cloud interactions is only important during Oct. because SW and LW CRF offset in Sept.
Sea ice-Cloud Interaction: Some Observational Evidence

Significant correlation between cloud fraction and the sea ice extent in AUTUMN: larger cloud fraction over open water and lower cloud fraction over ice.

Larger cloud fraction over ocean

Kay and Gettelman (2009)

Sept. 2008

ICESat + CALIPSO

Palm et al. (2010)

Lower cloud fraction over sea ice

No relationship during summer because the atmosphere and surface tend to be decoupled.
Data are available from the NASA Langley ASDC: http://eosweb.larc.nasa.gov/

CALIPSO-CloudSAT-CERES MODIS (C3M) Merged Data Product (Kato et al. 2010)

Data contains footprint averaged
1. Merged CALIPSO-CloudSAT vertical cloud property profiles (cloud fraction, LWC, IWC)
2. Computed vertical radiative flux profiles computed with CALIPSO and CloudSat derived cloud properties
3. Sea ice concentration (SSM/I)
Atmospheric State Regimes (Barton et al. 2012)

- **High Stability (HS):** $16 \, \text{K} < \text{LTS} < 24 \, \text{K}$
- **Stable (S):** LTS $< 16 \, \text{K}$
- **Very High Stability (VHS):** LTS $> 24 \, \text{K}$
- **Uplift (UL):** $\omega_{500} < -0.1 \, \text{Pa s}^{-1}$

Atmospheric state regimes determined using K-means cluster analysis.
Compositing Method...

(1) Determine the Atmospheric Regime of each satellite footprint using MERRA

(2) Determine the instantaneous sea ice concentration from SSM/I retrieval

A covariance between clouds and sea ice is said to occur if statistically significant differences are found in the average cloud properties between different sea ice concentration bins.
Arctic Clouds and Meteorological State

With increasing Lower Tropospheric Stability...

Cloud fraction
LWP
IWP
Maximum Cloud fraction altitude
Maximum LWC altitude and
Maximum IWC altitude
Cloud fraction decreases with increasing sea ice concentration.

The magnitude of the cloud fraction change with sea ice varies with season and atmospheric regime.
Low Cloud TWP vs. Sea Ice Concentration

Cloud TWP decreases with increasing sea ice

The magnitude of the TWP change with sea ice varies with season and atmospheric regime.
Cloud fraction vertical profiles is found to...

increase below 500 m and increase above 500 m,

be only sensitive to the presence of sea ice, and

increase at all levels

...with increasing sea ice concentration.
TWC vertical profiles is found to...

increase below 500 m and increase above 500 m,

be only sensitive to the presence of sea ice, and

exhibit non-monotonic behavior

...with increasing sea ice concentration.
Higher LTS is associated with higher near-surface stability. Near-surface stability increases with increased sea ice.
CRE vs. Sea ice Concentration

\[
\begin{align*}
\text{LW}_\text{CRE} &= \text{LW}_{\text{dn_all}} - \text{LW}_{\text{dn_clr}} \\
\text{SW}_\text{CRE} &= \text{SW}_{\text{dn_all}} - \text{SW}_{\text{dn_clr}} \times (1 - \alpha) \\
\text{Net}_\text{CRE} &= \text{SW}_\text{CRE} + \text{LW}_\text{CRE}
\end{align*}
\]
LW Surface Cloud Radiative Effect and Sea Ice Concentration

LW CRE is positive in all seasons.

LW CRE tends to decrease with increased sea ice.
SW Surface Cloud Radiative Effect and Sea Ice Concentration

SW CRE is negative in all seasons.

SW CRE tends to decrease with increased sea ice.
Net Cloud Radiative Forcing (W m⁻²)

- **“Negative” Feedback**
 - (a) JJA
 - HS regime
 - S regime
 - VHS regime
 - UL regime

- **“Positive” Feedback**
 - (b) SON

- (c) DJF

- (d) MAM

Net CRE vs. sea ice

Sea Ice Concentration (%)
Decomposition using independent column approx.:

\[\text{LW}_\text{all} = (1-N) \times F_{\text{clr}} + N \times F_{\text{cld}} \]

Both the clear-sky and cloudy sky fluxes decrease with increased sea ice.
Cloud Temperature vs. Sea Ice Concentration

Cloud Temperature (K)

HS regime
S regime
V+H regime
UL regime

Sea Ice Concentration (%)
Summary and Conclusion

-Arctic low cloud properties are sensitive to the atmospheric conditions: Cloud fraction, LWP, and IWP decrease with increased stability.

-A statistically significant covariance between Arctic cloud properties and sea ice concentration are found in each regime and season: Cloud fraction, LWP, and TWP decrease with increased sea ice concentration.

-Covariance between Arctic low cloud properties and sea ice concentration are also found to significantly influence the surface energy budget. “Negative Feedback” in Summer (SW CRE dominates) “Positive Feedback” in Fall and Winter (LW CRE dominates)
Questions?
Intermodel spread in surface temperature warming is greatest in the Arctic.