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Motivation: Predict Damage Containment Behavior
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Current state-of-the-art:
• Metallic structures: Damage containment
• Composite structures: linear threshold

Residual strength of fuselage panel

Frame
Stringer

Skin

Multi-bay
damage scenarios

Shear 
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Damage containment is achieved through:
1. Multiple load paths (e.g. Skin and substructure)
2. Damage arresting features (e.g. Rivets)

Objective: introduce an analysis methodology to predict damage propagation behavior in 
composite skin-stiffened structures with a notch



Simple Case: Center Notch Test Specimen
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Laminate assumed:
• Homogeneous
• Orthotropic 

(multidirectional)

Comments:
1. Classical linear elastic fracture mechanics (LEFM) does not scale accurately

2. Mar Lin is accurate, but requires large-scale testing to calibrate

3. Detailed, mesoscale progressive damage analysis is still being developed. 
Unresolved issues remain, e.g.:
• Difficulties with interaction of matrix cracks and delaminations
• Often computationally intractable for large structures
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Analysis methods that can predict notched strength accurately reducing 
the number of large-scale tests will save time and cost

(CMH-17)

Mar Lin (𝑛 = 0.2)

𝜎𝑛 =
𝐾𝐼𝑐
(𝜋𝑎)𝑛

Notched Strength Prediction
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Strain Softening Approach
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Notch length, 2𝑎, [in]

Notched 
strength,
𝜎𝑛
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IM7/8551-7
[±45/0/90/±30]s

(Dopker et al. SDM Conference, 1994)

Strain softening law determined 
by trial-and-error for notch 

lengths of 1.25 in. and 2.5 in.

𝜀

𝜎

Strain softening approach can predict notched strength accurately, but 
trial-and-error required to calibrate 𝜎 − 𝜀 law

Legend:
Test
Analysis: Strain softening
Analysis: Classical

2𝑎

Analysis using strain softening predicts excellent 
agreement for notch length of 8 in.

𝐺𝑐
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Actual Versus Idealization of (LCA)
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Laminate assumed:
• Homogeneous
• Orthotropic
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[1]
Through-the-

thickness 
damage

Thin fiber reinforced polymer (FRP) laminate
• Multidirectional layup
• Thickness: 𝑡

Damage propagates by evolution 
and interaction of micro- and 

mesoscale damage mechanisms

𝑁𝑦

𝑁𝑦

Idealization

Assume the damage can be represented with the 
cohesive zone model (CZM)

Opening 
crack

Objective: Characterize the cohesive law 
for a laminate and crack orientation 

𝜎

𝛿

??

Cohesive Law

𝛿

Cohesive 
zone

Cohesive law is 
anisotropic, but only one 
orientation is considered

𝐺𝑐



Characterization of LCA
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1) Assume a trilinear cohesive law 𝝈(𝜹)

𝜎 𝛿 =  

𝜎1 𝛿 0 ≤ 𝛿 ≤ 𝛿𝑘
𝜎2 𝛿 𝛿𝑘 < 𝛿 ≤ 𝛿𝑡
𝜎3 𝛿 𝛿𝑡 < 𝛿 ≤ 𝛿𝑐

𝜎𝑐

𝛿

𝜎

𝛿𝑐

𝜎𝑡 𝐺𝑐

𝐾

𝛿𝑡𝛿𝑘

𝜎 𝛿 =
𝜕𝐺fit
𝜕𝛿

4) Compute cohesive law from fracture toughness 
& crack opening displacement

Simple procedure to determine cohesive law for a through crack 

𝜎1 𝛿 = 𝐾𝛿

𝜎3 𝛿 =
𝜎𝑐
2 𝑛 − 1 2

2𝐺𝑐(𝑚 − 1)
𝛿 + (1 − 𝑛)𝜎𝑐

𝜎2 𝛿 =
𝑛𝜎𝑐 𝜎𝑡 − 𝜎𝑐
2𝑚𝐺𝑐

𝛿 + 𝜎𝑐

𝜎𝑡 =
𝜎𝑐(𝑛 − 1)(𝑛 −𝑚)

𝑛(𝑚 − 1)

Formulated 𝜎 𝛿 in terms of 𝜎𝑐, 𝐺𝑐, 𝑚, and 𝑛

2) Integrate trilinear 𝝈(𝜹): 𝐺fit =  

0

𝛿𝑐

𝜎 𝛿 𝑑𝛿

𝐺fit,3 𝛿 =
𝜎𝑐
2 𝑛 − 1 2

4𝐺𝑐(𝑚 − 1)
𝛿2 + 1 − 𝑛 𝜎𝑐𝛿 + 𝐶2

𝐺fit,2 𝛿 =
𝑛𝜎𝑐 𝜎𝑡 − 𝜎𝑐
4𝑚𝐺𝑐

𝛿2 + 𝜎𝑐𝛿 + 𝐶1

3) Fit expression for 𝑮𝐟𝐢𝐭(𝜹) to test data: 𝑮𝑹(𝜹)
using least squares

The fitting procedure determines: 𝜎𝑐,𝐺𝑐, 𝑚, and 𝑛
which completely define the trilinear cohesive law



Experimental Measurement of 𝑮𝑹(𝜹)
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CT specimen with DIC can be used to measure 𝐺𝑅(𝛿)

𝐺𝑅 =
𝑃2

2𝑡

𝜕𝐶

𝜕𝑎

𝐶 =
𝛿𝑙
𝑃
= 𝑎𝛼 + 𝛽 −1/𝜒

Where 𝛼, 𝛽, and 𝜒 are fit parameters from a 
LEFM finite element (FE) model

Assume that 𝐶(𝑎)
can be fit with:

𝐺𝑅 =
𝑃2

2𝑡

𝛼(  𝑃 𝛿𝑙
𝜒)
−(1+

1
𝜒
)

𝜒

Therefore:
𝐺𝑅 = 𝐺𝑅(𝑃, 𝛿𝑙 , 𝑡, 𝛼, 𝛽, 𝜒)

From CT test From linear FE model

Compact Tension (CT) Specimen Modified Compliance Calibration (MCC)

𝛿

Measure 𝛿 between two green points using 
digital image correlation (DIC)

𝑡



Demonstration of LCA
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LCA yields accurate predictions of through crack fracture propagation

Small CT Large CT

1 in.

Test specimens:
• AS4/VRM-34
• Warp-knit fabric
• [±45/902/0/902/±45]s

• Thickness = 0.104 in.
• Two sizes:

Small: 𝑊 = 2.01 in.
Large: 𝑊 = 4.02 in.
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Cohesive 
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PRSEUS Fuselage Panel
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Full-scale integrally stitched composite fuselage panel
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Test Objective: Assess damage containment capability by 
monitoring damage propagation ahead of the notch tips
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Pultruded Rod Stitched Efficient Unitized Structure
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Precured 
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Pass-thru

Foam Core

Frame

Stitching

Frame Tear 
Straps

Stitching
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Stringer 
CL
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Exploded View of Preform Assembly

PRSEUS 
Integrated 
Structure

Manufacturing Benefits:

• React out-of-plane load 
without mechanical 
fasteners

• Single sided tooling

• VARTM process

Promising technology for next generation airframes



Load Conditions

Full-scale Aircraft Structural Test Evaluation and Research (FASTER)

Flight loads simulated using FASTER fixture

Applied Loads
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Tension, 𝑁𝑥
Internal Pressure, 𝑝𝑖

Hoop load 

on frame, 𝑁𝜃
𝐹

FAA FASTER Fixture

Hoop load 

on skin, 𝑁𝜃
𝑆
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Selected Load History
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𝑁𝑥
𝐿 = 4670 lbf/in

𝑝𝑖
𝐿 = 9.2 psi

Limit Loads:

𝑝𝑖
𝑁𝑥 Final fracture

(Bergan et al. J Compos Struct, 113, 2014.)



Post Test Damage Observations

Damage path altered at 
stitch rows
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Complex and extensive damage observed
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Methodology: Residual Strength Prediction of Stiffened Panels
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Idealize damage at the structural scale:

• Through crack in skin

• Delamination between skin and stiffener

Crack in skin
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General stiffened 
FRP fuselage 

structure
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Assumed loads:
𝑁𝑥 > 𝑁𝜃 > 0

This idealization considers the interaction between damage in skin and delamination 
of stiffener interfaces 16



Finite Element Modeling
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Stitched Skin/Stringer Interface Model
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Idealization

Cohesive 
elements 

(delamination)

Cohesive 
elements 

(stitch)

(Bianchi and Zhang. Compos Sci Technol, 71(16), 2011;
Bianchi and Zhang. Compos Sci Technol, 72(8), 2012.)

FE Representation: Superposed cohesive elements
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Deformed
stitch

Undeformed
stitch

Delamination
crack tip

Input Parameters:
o Delamination:

o Fracture toughness determined from ASTM standard tests
o Mixed mode energy governed by Benzeggagh-Kenane (BK) criterion

o Stitch behavior:
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Strain Results: Indication of Damage Propagation
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Propagation of Skin/Stringer Delamination
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Crack Propagation
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Effect of Stitching Pitch
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Concluding Remarks

• Introduced a new methodology to analyze damage propagation in 
a notched, stiffened composite fuselage structure

• Cohesive elements are used to represent:

• Damage in the skin as it propagates from a notch

• Delamination of skin/stiffener interface

• Good correlation between test and analysis observed for:

• Damage initiation

• Damage propagation

• Strain redistribution

• Increasing the skin/stringer interface toughness can significantly 
improve the damage containment load
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Post Test Damage Observations
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