An Analysis Methodology to Predict Damage Propagation in Notched Composite Fuselage Structures

A. Bergan, C. Dávila, and F. Leone

Structural Mechanics & Concepts Branch NASA Langley Research Center Hampton, VA

J. Awerbuch and T.-M. Tan

Dept. of Mechanical Engineer and Mechanics Drexel University Philadelphia, PA 19104

> SAMPE Baltimore 2015 May 20, 2015

Outline

- Background
- Laminate cohesive approach (LCA)
- Full-scale fuselage panel test
- Test and analysis results
- Concluding remarks

3

Damage containment is achieved through:

- 1. Multiple load paths (e.g. Skin and substructure)
- 2. Damage arresting features (e.g. Rivets)

Current state-of-the-art:

- Metallic structures: Damage containment
- Composite structures: linear threshold

Objective: introduce an analysis methodology to predict damage propagation behavior in composite skin-stiffened structures with a notch

Simple Case: Center Notch Test Specimen

Comments:

- 1. Classical linear elastic fracture mechanics (LEFM) does not scale accurately
- 2. Mar Lin is accurate, but requires large-scale testing to calibrate
- 3. Detailed, mesoscale progressive damage analysis is still being developed. Unresolved issues remain, e.g.:
	- Difficulties with interaction of matrix cracks and delaminations
	- Often computationally intractable for large structures

Analysis methods that can predict notched strength accurately reducing the number of large-scale tests will save time and cost

Strain Softening Approach

(Dopker et al. SDM Conference, 1994)

Strain softening approach can predict notched strength accurately, but trial-and-error required to calibrate $\sigma - \varepsilon$ *law*

Outline

- Background
- Laminate cohesive approach (LCA)
- Full-scale fuselage panel test
- Test and analysis results
- Concluding remarks

Actual Versus Idealization of (LCA)

- Multidirectional layup
- Thickness: t

Damage propagates by evolution and interaction of micro- and mesoscale damage mechanisms

- References:
- Leone. PhD Thesis 2010
- 2. Rose et al. NASA/TM–2013-218024, 2013.

Cohesive interface $N_{\rm v}$ crack σ δ ?? Cohesive Law **Cohesive** zone Cohesive law is anisotropic, but only one orientation is considered G_c

Objective: *Characterize the cohesive law for a laminate and crack orientation*

Characterization of LCA

1) Assume a trilinear cohesive law $\sigma(\delta)$

Formulated $\sigma(\delta)$ in terms of σ_c , G_c , m , and n

$$
\sigma_1(\delta) = K\delta
$$

\n
$$
\sigma_2(\delta) = \frac{n\sigma_c(\sigma_t - \sigma_c)}{2mG_c} \delta + \sigma_c
$$

\n
$$
\sigma_1(\delta) = \frac{n\sigma_c(\sigma_t - \sigma_c)}{2mG_c} \delta + \sigma_c
$$

\n
$$
\sigma_2^2(n-1)^2
$$

$$
\sigma_3(\delta) = \frac{\sigma_c^2 (n-1)^2}{2G_c (m-1)} \delta + (1-n)\sigma_c
$$

2) Integrate trilinear $\sigma(\boldsymbol{\delta})$ **:** $G_{\text{fit}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 0 $\delta_{\mathcal{C}}$ $\sigma(\delta) d\delta$ $G_{\text{fit},3}(\delta) =$ $\sigma_c^2(n-1)^2$ $4G_c (m - 1)$ $\delta^2 + (1 - n)\sigma_c \delta + C_2$ $G_{\text{fit},2}(\delta) =$ $n\sigma_c(\sigma_t-\sigma_c$ $4mG_c$ $\delta^2 + \sigma_c \delta + C_1$

3) Fit expression for $G_{\text{fit}}(\delta)$ **to test data:** $G_R(\delta)$ **using least squares**

The fitting procedure determines: σ_c , G_c , m , and n which completely define the trilinear cohesive law

4) Compute cohesive law from fracture toughness & crack opening displacement

$$
\sigma(\delta) = \frac{\partial G_{\text{fit}}}{\partial \delta}
$$

Simple procedure to determine cohesive law for a through crack

Measure δ between two green points using digital image correlation (DIC)

Compact Tension (CT) Specimen Modified Compliance Calibration (MCC)

$$
G_R = \frac{P^2}{2t} \frac{\partial C}{\partial a}
$$

 $C=$ δ_l \overline{P} $= (a\alpha + \beta)^{-1/\chi}$ Assume that $C(a)$ can be fit with:

Where α , β , and γ are fit parameters from a LEFM finite element (FE) model

$$
G_R = \frac{P^2}{2t} \frac{\alpha((P/\delta_l)\chi)^{-(1+\frac{1}{\chi})}}{\chi}
$$

CT specimen with DIC can be used to measure $G_R(\delta)$

Demonstration of LCA

Test specimens:

- AS4/VRM-34
- Warp-knit fabric
- $[\pm 45/90_2/0/90_2/\pm 45]_s$
- Thickness = 0.104 in.
- Two sizes:

Small: $W = 2.01$ in. Large: $W = 4.02$ in.

Small CT Large CT

 1 in.

LCA yields accurate predictions of through crack fracture propagation

FE model

Outline

- Background
- Laminate cohesive approach (LCA)
- Full-scale fuselage panel
- Test and analysis results
- Concluding remarks

PRSEUS Fuselage Panel

Test Objective: Assess damage containment capability by monitoring damage propagation ahead of the notch tips

Full-scale integrally stitched composite fuselage panel

Pultruded Rod Stitched Efficient Unitized Structure

Promising technology for next generation airframes

Load Conditions

Full-scale Aircraft Structural Test Evaluation and Research (FASTER)

(Bergan et al. *J Compos Struct*, 113, 2014.)

FAA FASTER Fixture

Selected Load History

Flight loads simulated using FASTER fixture

Post Test Damage Observations

stitch rows

F-3 Image Mirrored F-2 **Interior Notch**

Widespread damage Stiffeners disbonded

Complex and extensive damage observed 15

Idealize damage at the structural scale:

- **Through crack** in skin
- **Delamination** between skin and stiffener

This idealization considers the interaction between damage in skin and delamination **of stiffener interfaces** 16

Stitched Skin/Stringer Interface Model

Idealization

FE Representation: Superposed cohesive elements

(Bianchi and Zhang. *Compos Sci Technol*, 71(16), 2011; Bianchi and Zhang. *Compos Sci Technol*, 72(8), 2012.)

Input Parameters:

- o Delamination:
	- o Fracture toughness determined from ASTM standard tests
	- o Mixed mode energy governed by Benzeggagh-Kenane (BK) criterion
- o Stitch behavior:

Outline

- Background
- Laminate cohesive approach (LCA)
- Full-scale fuselage panel
- Test and analysis results
- Concluding remarks

Strain Results: Indication of Damage Propagation

Consistent trend between test and analysis

Propagation of Skin/Stringer Delamination

Model predicts the delamination behavior inline with test observations

Crack Propagation

Good agreement between tests and analysis

Effect of Stitching Pitch

Doubling the number of stitches increases damage containment load by 11%

Outline

- Background
- Laminate cohesive approach (LCA)
- Full-scale fuselage panel
- Test and analysis results
- Concluding remarks
- Introduced a new methodology to analyze damage propagation in a notched, stiffened composite fuselage structure
- Cohesive elements are used to represent:
	- Damage in the skin as it propagates from a notch
	- Delamination of skin/stiffener interface
- Good correlation between test and analysis observed for:
	- Damage initiation
	- Damage propagation
	- Strain redistribution
- Increasing the skin/stringer interface toughness can significantly improve the damage containment load

Acknowledgements

NASA

- Dawn Jegley
- Andrew Lovejoy
- Pat Johnston
- Cheryl Rose
- Will Johnston
- Kevin Gould
- Adam Przekop

Boeing

- Kim Linton
- Bert Neal
- George Mills
- Greg Korkosz (Legacy)

FAA

- John Bakuckas
- Yongzhe Tian
- Jeff Panco
- Pat Sheehan
- Curt Davies

Post-test NDI conducted at Sandia National Labs, NM

Drexel University

- Amey Khonalkar
- Reewanshu Chadha

Questions?

Backup

Post Test Damage Observations

Damage in skin exhibited similar path through the thickness 29