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Motivation: Predict Damage Containment Behavior
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Damage containment is achieved through:
1. Multiple load paths (e.g. Skin and substructure)
2. Damage arresting features (e.g. Rivets)
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i Current state-of-the-art: |
|« Metallic structures: Damage containment |

. . |
i * Composite structures: linear threshold |

Objective: introduce an analysis methodology to predict damage propagation behavior in
composite skin-stiffened structures with a notch 3



Simple Case: Center Notch Test Specimen

Notched Strength Prediction

(CMH-17)
607 |Coupon Structural scale *
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Notch length, 2a, [in]
Comments:

1. Classical linear elastic fracture mechanics (LEFM) does not scale accurately
2. Mar Lin is accurate, but requires large-scale testing to calibrate

3. Detailed, mesoscale progressive damage analysis is still being developed.
Unresolved issues remain, e.g.:
 Difficulties with interaction of matrix cracks and delaminations
* Often computationally intractable for large structures

Analysis methods that can predict notched strength accurately reducing
the number of large-scale tests will save time and cost




Strain Softening Approach

(Dopker et al. SDM Conference, 1994)

*
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Strain softening law determined
by trial-and-error for notch
lengths of 1.25 in. and 2.5 in.
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+ Analysis: Strain softening
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Analysis using strain softening predicts excellent
agreement for notch length of 8 in.

Strain softening approach can predict notched strength accurately, but
trial-and-error required to calibrate 0 — € law
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Actual Versus ldealization of (LCA)

Actual

Through-the-
thickness
damage

Thin fiber reinforced polymer (FRP) laminate
* Multidirectional layup
* Thickness: t

Damage propagates by evolution
and interaction of micro- and
mesoscale damage mechanisms

References:
1. Leone. PhD Thesis 2010
2. Rose et al. NASA/TM—-2013-218024, 2013.

Idealization

Assume the damage can be represented with the
cohesive zone model (CZM)

N,
T T T T T Laminate assumed:

y * Homogeneous
I * Orthotropic

X

Notch
Opening Cohesive
crack interface

Cohesive Law

Cohesive \

zone

Cohesive law is
anisotropic, but only one
orientation is considered

v

Objective: Characterize the cohesive law

for a laminate and crack orientation



Characterization of LCA

1) Assume a trilinear cohesive law o (9§)

N
O-C
0,(8) 0<68<5,
K 0(8) ={0,(8) 8, <5<,
0,(8) 8, <8<,
Ot G
C
5. 6, s, O

Formulated ¢ (9) in terms of o, G,, m, and n

71(8) = K6 _ o=@ -m)

_ n(m-—1)
a,(6) = nacg:rth %) é + o,
2 -1 2
a5(6) = % 6+ (1—n)o,

8¢
2) Integrate trilinear 6(6): Gg, = f a(8)dé
0

no. (at - Gc)

Gfit,Z(S) - 4mG 62 + O-C6 + Cl
C
of(n—1)*
Gfit,3(6) = —4G (m — 1) o) + (1 — n)O'C5 + Cz
c

3) Fit expression for G (&) to test data: Gr(6)
using least squares

The fitting procedure determines: o.,G., m, and n
which completely define the trilinear cohesive law

4) Compute cohesive law from fracture toughness
& crack opening displacement

dGrit

7(8) =55

Simple procedure to determine cohesive law for a through crack 8



Experimental Measurement of Gg(6)

Compact Tension (CT) Specimen Modified Compliance Calibration (MCC)
P%2acC
GR -
P, 6, 2t da
0 Thin
> 5o R muI-tidirectionaI Assume that C(a) 6 1y
S 4 laminate can be fit with: ¢= P (ac+p)
A
@ Where a, 8, and y are fit parameters from a
LEFM finite element (FE) model
_ X
~ t
—Qy——— Aa
J W . Therefore:
D g GR=GR(P,5l,t,(X,ﬁ,)()
From CT test — From linear FE model
‘ W=2.01in.
a,/W=2
1
P2 a((P/5)%) Y
Measure § between two green points using Gr =57

2t
digital image correlation (DIC) X

CT specimen with DIC can be used to measure Gg(0)



Demonstration of LCA

Test specimens: Small CT Large CT

* AS4/VRM-34

* Warp-knit fabric

* [+45/90,/0/90,/+45],

* Thickness = 0.104 in.

* Two sizes:
Small: W = 2.01 in.
Large: W = 4.02 in.

FE model
1400 1400 .
Test data Test data ____F_I:[_to ;mall onl
1200+ 1200+ A
1000 Fit to small only 1000+
| P |
[|§f' o ‘/ [Ibf 500 Fit to all
" 600 600
; Fit to all
Cohesive 400/ 4001
elements
2001 2001
0 ' ‘ ' ! 0 ‘ ' ' '
0.00 0.04 0.08 0.12 0.16 0.00 0.04 0.08 0.12 0.16
6; [in] 6; [in]

LCA yields accurate predictions of through crack fracture propagation ;
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PRSEUS Fuselage Panel

Thin layer of woven
fiberglass on
exterior surface

Stringer

Test Objective: Assess damage containment capability by

monitoring damage propagation ahead of the notch tips

Full-scale integrally stitched composite fuselage panel 12



Pultruded Rod Stitched Efficient Unitized Structure

Frame
Foam Core
o
Stitching » Stitching
PRSEUS )) et
Integrated s s o Stringer Tear Strap
Structure Slot for Stringer o~ e
Pass-thru 2 :

Stitching
Precured

Manufacturing Benefits: Rods
* React out-of-plane load

without mechanical

fasteners
* Single sided tooling

Stringer
d VARTM pI’OCE‘SS Frame Tear
Straps

Stitching

Strin%er
CL
Exploded View of Preform Assembly

Promising technology for next generation airframes



Load Conditions

Full-scale Aircraft Structural Test Evaluation and Research (FASTER)

(Bergan et al. J Compos Struct, 113, 2014.)

FAA FASTER Fixture

Applied Loads

Hoop load

: on frame, N}
Selected Load History

2.0 1

] N AN Final fracture Tension, Ny
Ne i P2 D x)f Internal Pressure, p;
L pl 101 v Limit Loads:
0.5 / k NL = 4670 Ibf/in
0.0 / | piL = 9.2 psi
Time

Flight loads simulated using FASTER fixture

14



Post Test Damage Observations

Exterior Interior
Bl e N : Stitch rows
R SN
S-6 TR EE——
S-5 Damage
path
Notch B 7. 47 changes
S-4 (T direction Notch
S-3 R 6
8'2' 4 ; - LB
CHEE T N
-1 M7 - -
F-3 F-2 F-3 Image Mirrored F-2
Damage path altered at Widespread damage
stitch rows Stiffeners disbonded

Complex and extensive damage observed .



Methodology: Residual Strength Prediction of Stiffened Panels

ldealize damage at the structural scale:
 Through crack in skin
 Delamination between skin and stiffener

ettt

TT—_
-« i —>
[
General stiffened / “— (Crackin skin
FRP fuselage «— | Turned crack —
structure L] | — . ]
N, o | Stringer_| N,
£
i 2 Notch ™4 Skin —
[
«— |- Delamination == —
- |
0
| X l l l l l l l Assumed loads:
r Ny N, > Ng >0

This idealization considers the interaction between damage in skin and delamination
of stiffener interfaces 16



Finite Element Modeling

Global Model

Local Model
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Stitched Skin/Stringer Interface Model

Idealization FE Representation: Superposed cohesive elements
Undef d (Bianchi and Zhang. Compos Sci Technol, 71(16), 2011;
n e_orme Deformed Bianchi and Zhang. Compos Sci Technol, 72(8), 2012.)
stitch .
J thltch
o E——GE —anee
_Skin >kin 7-*
Delamination 0 Cohesive Cohesi
crack tip ‘ elements IO esn/te
r (delamination) € erpen >
(stitch)

Input Parameters:
o Delamination:
o Fracture toughness determined from ASTM standard tests
o Mixed mode energy governed by Benzeggagh-Kenane (BK) criterion

o Stitch behavior:

P
60 Tension [
50 -____T: Stitch
40 ‘P Teflon
p 30 Shear (Glaessgen et al. J Compos Mater, 36(23), 2002.
[Ibf] ig i f aan T Adams. J Reinf Plast Compos, 19(14), 2000)
| IH |
0 ¢ T T T )
0.000 0.005 0.010 0.015 0.020

& [in]
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Strain Results: Indication of Damage Propagation

o Local Model _
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Consistent trend between test and analysis .



Propagation of Skin/Stringer Delamination
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Model predicts the delamination behavior inline with test observations



Crack Propagation

Panel
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Good agreement between tests and analysis .



Effect of Stitching Pitch
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Doubling the number of stitches increases damage containment load by 11% .
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Concluding Remarks

* Introduced a new methodology to analyze damage propagation in
a notched, stiffened composite fuselage structure

« Cohesive elements are used to represent:
« Damage in the skin as it propagates from a notch
» Delamination of skin/stiffener interface

« Good correlation between test and analysis observed for:
« Damage initiation
« Damage propagation
 Strain redistribution

* Increasing the skin/stringer interface toughness can significantly
Improve the damage containment load

25
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Post Test Damage Observations

<

S-5

S-4

S-3

SF-5-F4-F3-F2-F1=

-45° Exterior

Is-6 . :

=5 6 (and fiberglass) Fiber

S-4 orientation 900
“S-3 X

59 r
'S-1

Notch—*

>
} Stitch

Side

Tip B < ”O,ZLV
+45°
Delamination surface
B Interface: -45°/+45°
90° -45°
Delamination &
matrix cracks
______________ within: 90°
OO
N Interior surface
A r bundle delaminations
_____ 0,90°
Stichrow 450
x, 0°
Exterior

Damage
along notch axis

Damage in skin exhibited similar path through the thickness

Delamination
matrix cracks
ithin: 90°

Skin/stringer
delaminated

&

29



