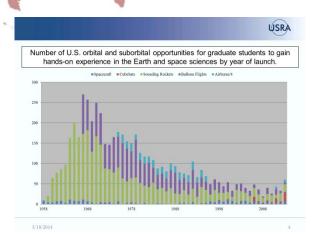


Space Technology...

.... an Investment for the Future


- Enables a new class of NASA missions beyond low Earth Orbit.
- Delivers innovative solutions that dramatically improve technological capabilities for NASA and the Nation.
- Develops technologies and capabilities that make NASA's missions more affordable and more reliable.
- Invests in the economy by creating markets and spurring innovation for traditional and emerging aerospace business.
- Engages the brightest minds from academia in solving NASA's tough technological challenges.

Value to NASA Value to the Nation

Addresses National Needs

A generation of studies and reports (40+ since 1980) document the need for regular investment in new, transformative space technologies.

Who:

The NASA Workforce Academia
Small Businesses
The Broader Aerospace
Enterprise

Space Technology Portfolio

Transformative & Crosscutting Technology Breakthroughs

Pioneering Concepts/Developing Innovation Community

Creating Markets & Growing Innovation Economy

Technology Demonstration

Missions bridges the gap between early proof-of-concept tests and the final infusion of cost-effective, revolutionary technologies into successful NASA, government and commercial space missions.

NASA Innovative Advanced Concepts (NIAC) nurtures

visionary ideas that could transform future NASA missions with the creation of breakthroughs—radically better or entirely new aerospace concepts—while engaging America's innovators and entrepreneurs as partners in the journey.

Centennial Challenges

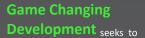
directly engages nontraditional sources advancing technologies of value to NASA's missions and to the aerospace community. The program offers challenges set up as competitions that award prize money to the individuals or teams that achieve a specified

technology challenge.

Small Spacecraft Technology Program

develops and demonstrates new capabilities employing the unique features of small spacecraft for science, exploration and space operations.

Space Technology Research Grants _{seek to}


accelerate the development of "push" technologies to support future space science and exploration needs through innovative efforts with high risk/high payoff while developing the next generation of innovators through grants and fellowships.

Flight Opportunities

facilitates the progress of space technologies toward flight readiness status through testing in space-relevant environments. The program fosters development of the commercial reusable suborbital

transportation industry.

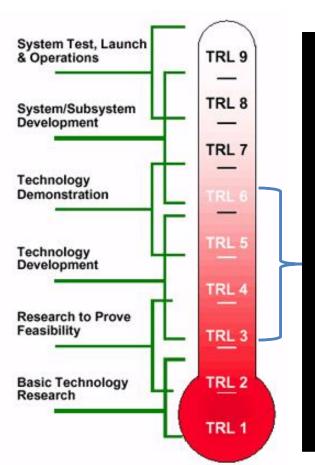
identify and rapidly mature innovative/high impact capabilities and technologies that may lead to entirely new approaches for the Agency's broad array of future space missions.

Center Innovation Fund

stimulates and encourages creativity and innovation within the NASA Centers by addressing the technology needs of the Agency and the Nation. Funds are invested to each NASA Center to support emerging technologies and creative initiatives that leverage Center talent and capabilities.

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs

provide an opportunity for small, high technology companies and research institutions to develop key technologies addressing the Agency's needs and developing


the Nation's innovation economy.

What is the Game Changing Development Program?

Changing
Development
Program focuses
on mid-TRL. This is
known as the
"Valley of Death."
Many technologies
never make it from
concept to flight.

- Disruptive or Transformative
 Technologies
- Orders of Magnitude
 advancement enabling new
 missions and capabilities
- Principal Investigator led investment strategy
- Push for rapid technology infusion to future NASA missions
- Partnerships for cost sharing and infusion
- Informed risk management posture for developing High Payoff Technologies
- Changing the way a thing is done or made

GCD Program Vision and 5 Management Themes

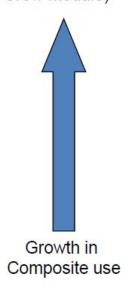
To be the premier organization within the Agency/Country to rapidly advance mid TRL disruptive space technologies from concept to demonstration.

Revolutionary Robotics and Autonomous Systems (RRAS) Lightweight
Materials and
Advanced Manufacturing
(LMAM)

Advanced Entry, Descent and Landing (AEDL) Future Propulsion and Energy Systems (FPES)

Affordable
Destination Systems
and Instruments (ADSI)

NASA's FORWARD PATH HUBBLE INTERNATIONAL **SPACE STATION SPACE LAUNCH** SYSTEM (SLS) **Human Class Mars ORBITERS** LANDERS **Surface Lander** PHOBOS 6 **DEIMOS** MARS **IN-SPACE TRANSFER** HABITAT **SPACECRAFT** ASTEROID ORION **ELECTRIC** REDIRECT MISSION **PROPULSION** COMMERCIAL **CARGO AND CREW** MISSIONS: 1 TO 12 MONTHS RETURN: DAYS MISSIONS: 2 TO 3 YEARS RETURN: MONTHS **MISSIONS: 6-12 MONTHS RETURN: HOURS** EARTH RELIANT PROVING GROUND **EARTH INDEPENDENT**



NASA's Use of Composites

NASA's Use of Composites

Future Composite Space Vehicles (NASA's Composite Crew Module)

Future	NASA Space Technology Roadmaps	Composite is Cross cutting technology, TA12, TA7
Today	NASA's COTS & CCDEV Vehicles	Composite Pressure Vessels Composite Structure
Today	Space Launch System	Composite Pressure Vessels Composite Structure
Today	Orion	Composite Pressure Vessels
1990s	International Space Station	Composite Pressure Vessels
1970s	Space Shuttle	Composite Pressure Vessels Composite Wing Leading Edge
1960s	Apollo	Pre-composites

Accelerated Growth in Composites 🔼

Barriers to Growth

- Funding limitations
- Cross disciplinary technological challenges
- Maturity required to meet roadmap dates

Steps to Accelerate Growth

- U.S. intra-government collaboration
- Government industry partnerships
- International communication and collaboration
- Globally harmonized roadmaps for key technologies

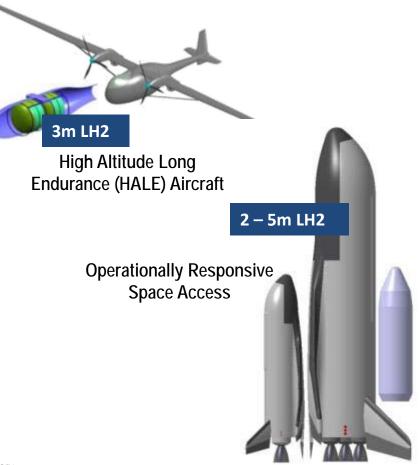
NASA Commercial Collaboration Charlie Bolden (NASA) and Elon Musk: (Space X)

CCTD Accomplishments: Manufacturing Completed the Fabrication of 5.5m Cryotank

Technology Firsts:

1st successful large (5.5m), fiber placed test article using Out of Autoclave 5320-1/IM7 material. Completed fabrication on March 20, 2014.

Composite Cryotank Potential Transitions



Exploration Upper Stage (EUS)

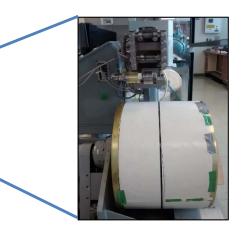
Boost and Upper Stages & Low Cost Launch Vehicles

 A high confidence for CCTD (Composite tanks and Out of the Autoclave) technology infusion into SLS EUS, DoD and commercial applications.

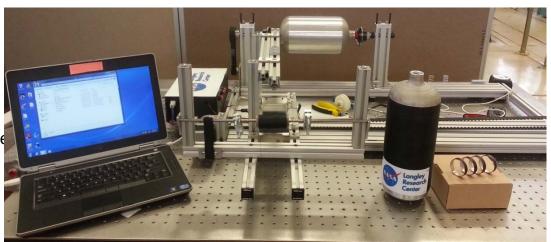
CNT Composite Processing: Filament Winding Scale-Up

Purpose:

 Develop large scale fabrication paths for winding COPV liners to be used in flight tests


Status:

- Two manufacturing methods are under development
 - Filament winding on commercial winder using CNT yarn prepreg fabricated on commercial system
 - Filament winding on scaled down winder system equipped to continuously solution prepreg and wind prepreg onto pressure vessel
- Held technical exchange meeting at MSFC from Dec 9-10 to explore the use of large scale filament winder at MSFC for test and flight COPV articles
- Defined a test matrix to be used for screening performance of CNT composites on small cylinders as part of the downselect criteria to be used to select the manufacturing method for the COPVs


Next steps:

 Manufacturing method downselect to be conducted at meeting scheduled on February 6.

Commercial prepregger used to fabricate CNT yarn prepreg

Continuous wet-winder developed in-house

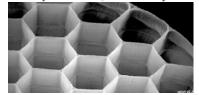
Ultralightweight Cores for Efficient Load Bearing Structures

Goals: Reduce the mass and improve the performance of composite sandwich structures

Approach: Utilize ultralightweight cores (nanolattices, CNT honeycomb, nanoporous materials) and high strength CNT reinforced composites to produce ultralightweight, high performance composite sandwich structures

- Develop and demonstrate scalable approaches to produce ultralightweight cores (STMD NRA contract)
- Integrate CNT structural materials currently under development in GCD Nanotechnology Project, compare with conventional CFRP facesheets
- Demonstrate scalability and performance through the design, fab, and ground test of a CEUS skirt panel segment (First ever application) – Infusion Path to SLS

Benefits:


 30+% reduction in skirt panel weight over conventional honeycomb

Polyimide Aerogels (MAB Meador, GRC)

Micro/Nanolattice Structures (J. Greer, Caltech)

CNT Honeycomb (M. DeFolder, Cambrigde)

Milestones:

- Phase I Contract(s) awarded 5/15
- Complete fabrication and testing of 1' x 1' x
 1" flat and curved core panels 6/16
- KDP 1- Demonstrate core panels meet density and property targets + Phase II contract award -7/16
- Complete fab and testing of 2' x 2' x 1" flat and curved panels – 7/17
- Complete fabrication of 10' x 11' x 1"flat and curved panels for scale-up production – 1/18

Additive Manufacturing Structural Integrity Initiative (AMSII)

- The aerospace industry is embracing Additive Manufacturing technologies for their potential to increase the affordability of rocket propulsion parts and components, by offering significant schedule and cost savings over traditional manufacturing methods.
- In the absence of Agency, government, or industry standards for AM technology, NASA Program Offices are relying on detailed Certification Requirements as the primary channel for conveying the measures required to ensure the structural integrity of AM parts and components.
- In the drafting of these Certification Requirements, a number of knowledge gaps have emerged – knowledge underpinning the requirements – creating sources of potential technical risk to the adopting program. For example,
 - How we declare the AM process acceptable & in-control?
 - What constitutes an acceptable powder feedstock?
 - What is a characteristic AM defect structure?
- Bridging these knowledge gaps is the purpose of the Additive Manufacturing Structural Integrity Initiative (AMSII).

The AM Certification Requirements Document is the keystone that holds the knowledge pieces in place. Without requirements AND foundational knowledge, the structural integrity of an AM part cannot be assured.

AMSII: Knowledge Required for Certification of Critical AM Hardware

Foundational M&P (knowledge gaps)

Powder

Chemistry, Morphology,
Distribution
Recyclability

Thermal processing
Material characterization
Characteristic defects / NDE
Surface finish improvement
Geometric dimensioning &
tolerancing / Thin sections

Quality

Build factor interactions

Machine-to-machine variability

Certification RQMTs (in draft)

Model Controls

Powder Controls

Material Property

Development

Build Execution Rqmts

Lot Acceptance Methodology

Part Verification Rqmts
Proof test methodology
First article methodology
NDE / PODs

Part Development Plans

PBF Flight Hardware (potential for risk)

Commercial Crew Program

SpaceX's
SuperDraco
regenerativelycooled Engine
Chamber printed
in IN718.

Launch 2017

Space Launch System RS-25E

Trade study underway. IN718 ducts, nozzles, and baffles are early candidates for print.

Launch 2023+

Knowledge gaps exist in the basic understanding of AM Materials and Processes, creating potential for risk to certification of critical AM Hardware.

NASA Advanced Manufacturing Technology Composites

- NASA's goal in large scale composite structures for Space is to develop low cost, lightweight, and thermally efficient structures, materials and manufacturing technologies for potential applications beneficial to NASA Missions.
- NASA aims to gain better understanding of the entire trade space. Be a *smarter*buyer and a more effective, more relevant partner to the entire Aerospace Industry.
- NASA plans continued interest and investments in advanced composite systems and leverage knowledge for future projects.

Find out more!

GAMEON.NASA.GOV

