

Improving climate projections using "intelligent" ensembles

Noël C. Baker and Patrick C. Taylor NASA Postdoctoral Program

Presented at the AGU Joint Assembly in Montréal, Canada May 5, 2015

The Intergovernmental Panel on Climate Change (IPCC) predicts that 21st-century global surface temperature change is likely to exceed 2°C

21st-century temperature trend (RCP 8.5 multi-model ensemble mean)

IPCC prediction comes from ensemble of global climate models: CMIP5 (Coupled Model Intercomparison Project)

CMIP5 Model BCC-CSM1.1 BCC-CSM1.1.m CanESM2 CCSM4 CESM1-BGC CESM1-CAM5 CESM1-WACCM CMCC-CESM CMCC-CM CMCC-CMS CNRM-CM5 ACCESS1.0 ACCESS1.3 CSIRO-Mk3.6.0 FGOALS-g2 FIO-ESM GFDL-CM3 GFDL-ESM2G GFDL-ESM2M GISS-E2-H GISS-E2-H-CC GISS-E2-R GISS-E2-R-CC HadGEM2-AO HadGEM2-CC HadGEM2-ES INM-CM4 IPSL-CM5A-LR IPSL-CM5A-MR IPSL-CM5B-LR MIROC5 MIROC-ESM MPI-ESM-LR MPI-ESM-MR NorESM1-M NorESM1-ME

Models are averaged together to make climate predictions

21st-century temperature trend (RCP 8.5 multi-model ensemble mean)

But models can have a large spread in predictions, and individual models can perform very differently from observations

Global surface temperature anomaly, from 35 CMIP5 models

The traditional **Multi-Model Ensemble (MME)** Approach uses the model mean to provide an improved "best estimate" forecast

The multi-model ensemble generally performs better than individual models

Example: *I² performance index* (Reichler and Kim 2008)

Calculates aggregated model errors relative to NCEP/NCAR reanalyses for multiple climate variables

Some models perform better than others:

Can we use knowledge of model performance for a better way to combine model output?

The "intelligent ensemble" method

for creating multi-model ensemble projections

Project goal: determine future climate state using observed current climate and an ensemble of models

 $f(x_{obs}) = \Delta x$

Observed climate

Future climate state

Previous work has explored model performance and ensemble-weighting metrics

Several examples:

.analev

Cente

- Model subsets (USGCRP 2009)
- Performance metrics (Gleckler et al. 2008, Reichler and Kim 2008)
- Constrained projections (Tett et al. 2013; Giorgi and Mearns 2003)
- Weighted future trends (Boe et al. 2009)
- Bias correction (Baker and Huang 2012)

"The community would benefit from a larger set of proposed methods and metrics" (Knutti 2010)

New climate model performance metrics are tested:

representative of energy budget processes

Radiation budget quantities

- Top-of-atmosphere (TOA) longwave (LW) and shortwave (SW) radiation fluxes
- Surface LW and SW radiation fluxes
- Surface temperature

Statistical tests

- F-test for equal variances
- Kolmogorov-Smirnov test for distribution similarity
- Earth Mover's Distance (EMD): test for area of distribution overlap
- Local Variance: test variance of first difference time series (Baker and Taylor 2015)

New process-oriented metrics

 $\frac{\delta TOA \ Radiation \ flux}{\delta \ Surface \ temperature}$

: represent interannual-timescale radiative feedbacks

Model data: 32 CMIP5 models <u>http://pcmdi9.llnl.gov/</u>

- 'Pre-Industrial Control' simulations (monthly mean, 100 years) to create metric weights
- 'RCP 8.5' future simulations (monthly mean, 2081-2100 minus 2011-2030 to produce 21st-century trends)

Observational datasets:

NASA CERES EBAF-TOA and surface monthly global-mean (full data record: 03/2000 - 05/2014) http://ceres.larc.nasa.gov/

NASA GISS Surface Temperature Analysis (GISTEMP) http://data.giss.nasa.gov/gistemp/

Step 1: Test model quality with selected metrics

OLR all-sky local variance test OLR all-sky EMD value OLR cloudy-sky variance test OLR cloudy-sky K-S test OLR cloudy-sky local variance test OLR cloudy-sky EMD value OLR clear-sky variance test OLR clear-sky K-S test OLR clear-sky local variance test OLR clear-sky EMD value SW all-sky variance test SW all-sky K-S test SW all-sky local variance test SW all-sky EMD value SW cloudy-sky variance test SW cloudy-sky K-S test SW cloudy-sky local variance test SW cloudy-sky EMD value SW clear-sky variance test SW clear-sky K-S test SW clear-sky local variance test SW clear-sky EMD value Surface temperature variance test Surface temperature K-S test Surface temperature local variance test Surface temperature EMD value **OLR/Ts** variance test OLR(cloudy-sky)/Ts variance test OLR/Ts K-S test OLR(cloudy-sky)/Ts K-S test OLR Ts regression means test OLR(cloudy-sky) Ts regression means test SW/Ts variance test SW(cloudy-sky)/Ts variance test SW/Ts K-S test SW(cloudy-sky)/Ts K-S test SW Ts regression means test SW(cloudy-sky) Ts regression means test Metric mean

Step 2: Using skill-subset of models, apply "perfect model" approach (Räisänen and Palmer 2001)

Create set of potential "Earths" each with a continuous time series of observations

14

Step 2: Using skill-subset of models, apply "perfect model" approach (Räisänen and Palmer 2001)

Create set of potential "Earths" each with a continuous time series of observations

- For each "perfect model" (potential Earth), the performance metrics are tested on one simulation (Pre-Industrial Control), then applied to a different simulation (RCP 8.5 future trends), <u>linking present-day quality</u> with a future state.
- Metric values are used as model weights to create unequal-weight ensemble mean trends.

"Perfect" model

- For each "perfect model" (potential Earth), the performance metrics are tested on one simulation (Pre-Industrial Control), then applied to a different simulation (RCP 8.5 future trends), <u>linking present-day quality</u> with a future state.
- Metric values are used as model weights to create unequal-weight ensemble mean trends.

• Metric-weighted ensemble means which have the least error compared with the "perfect model" are considered the best-performing metrics.

Reichler and Kim (2008) *I² performance index* is used to compare metric quality

<u>Metrics which perform well indicate a physical link between</u> present-day model quality and reliability of projected trends

Step 3: Using best-performing metric, create new "intelligent ensemble" projections

OLR all-sky variance test OLR all-sky K-S test OLR all-sky local variance test OLR all-sky EMD value OLR cloudy-sky variance test OLR cloudy-sky K-S test OLR cloudy-sky local variance test OLR cloudy-sky EMD value OLR clear-sky variance test OLR clear-sky K-S test OLR clear-sky local variance test OLR clear-sky EMD value SW all-sky variance test SW all-sky K-S test SW all-sky local variance test SW all-sky EMD value SW cloudy-sky variance test SW cloudy-sky K-S test SW cloudy-sky local variance test SW cloudy-sky EMD value SW clear-sky variance test SW clear-sky K-S test SW clear-sky local variance test SW clear-sky EMD value Surface temperature variance test Surface temperature K-S test Surface temperature local variance test Surface temperature EMD value **OLR/Ts** variance test OLR(cloudy-sky)/Ts variance test OLR/Ts K-S test

OLR(cloudy-sky)/Ts K-S test

OLR Ts regression means test OLR(cloudy-sky) Ts regression means test SW/Ts variance test SW(cloudy-sky)/Ts variance test SW(cloudy-sky)/Ts K-S test SW(cloudy-sky)/Ts K-S test SW Ts regression means test SW(cloudy-sky) Ts regression means test Metric mean

Use metric values as model weights to create unequalweighted mean projections

Results: new 21st-century projections (surface temperature)

"Intelligent" ensemble mean temperature trend (°C)

Global-mean surface temperature trend: 3 °C (0.1 °C higher than the traditional equal-weight MME)

Difference between "Intelligent" and Equal-weight ensemble means (°C)

The "Intelligent Ensemble" predicts about 10% higher regional surface temperature increases than MME

Contours are shaded only where the difference is statistically significant

Results: new 21st-century projections (precipitation)

"Intelligent" ensemble mean precipitation trend (cm/year)

The "Intelligent Ensemble" predicts more intense precipitation increases in the tropics, especially in the South Pacific Convergence Zone (SPCZ)

Difference between "Intelligent" and Equal-weight ensemble means (cm/year)

Contours are shaded only where the difference is statistically significant

Results: new 21st-century projections (surface downward SW radiation)

"Intelligent" ensemble mean surface shortwave radiation trend (W/m²)

Difference between "Intelligent" and Equal-weight ensemble means (W/m²)

Higher surface radiation: less clouds

The "Intelligent Ensemble" predicts 10-20% less clouds than MME over certain land areas, especially in midlatitude regions

Contours are shaded only where the difference is statistically significant

Results: new 21st-century projections (regional-mean weights)

"Intelligent" ensemble mean temperature trend (°C)

Difference between "Intelligent" and Equal-weight ensemble means (°C)

Regional-mean weights can give very different predictions: the US-mean best-performing metric predicts less intense warming than the MME

Predicted warming: 3.9 °C (0.2 °C less than MME)

Stippling indicates where the difference is statistically significant

-0.3

Conclusions

This project demonstrates:

- <u>New climate model performance metrics</u> related to radiation processes are tested on the CMIP5 archive
- Present-day model skill is linked to quality of future projections

The results are:

- <u>New "intelligent ensemble" projections</u> are created and compared with traditional MME projections
- For global-mean metrics, "intelligent ensemble" projections of large-scale patterns remain similar, but intensity of predicted surface temperature, precipitation, and surface radiation increase is <u>10-20% higher than the MME</u>
- Regional-mean metrics can produce very different projections: the US-mean projected warming is 3.9 °C (0.2 °C less than MME)