Galactic Cosmic Ray
Simulator Design at NSRL

Tony C. Slaba
NASA Langley Research Center
Outline

• Brief overview

• Reference field specification
 - External (free space) vs. internal (shielded tissue) environments

• General beam selection strategy

• Discussion and summary

Note: Most of the content described in this presentation can be found in:
Full reference list and citations for models used can also be found in the document (not included here)

Overview

• Long term exposure to GCR presents a serious health risk to astronauts with large uncertainties connected to the biological response
 - Main focus of radiobiology experimental research program is to reduce these uncertainties

• In order to reduce these uncertainties, radiobiology experiments are performed to understand basic mechanisms for carcinogenesis, CNS and cardiovascular effects
 - Most experiments have been performed with individual ion species and/or energies
 - Approach is guided in part by desire to understand basic mechanisms but also heavily influenced by facility constraints and cost

• Complicating feature of the GCR problem is that broad range of energies and particles found in space are difficult to provide in a laboratory

• NSRL has matured to a point where simulating a “broad” spectrum of particles and energies in a single experiment is feasible from a facility and cost perspective
 - Still can’t simulate full GCR spectrum in one experiment but can do better than a single particle and energy (e.g. ^{56}Fe at 1 GeV/n)
Overview

• Important to understand that development of a “GCR simulator” does not mean single beam studies are not useful or needed
 - Single beam studies are needed to examine and improve understanding of basic mechanisms where limited knowledge currently exists
 - Also needed to test, develop, and validate theoretical and computational models

• Instead, the simulator design should be viewed as the development of a new technology that provides new capabilities
 - Provides opportunity to test models derived from single beam studies in more realistic exposure scenario
 - Improves operational efficiency of NSRL, which in turn, improves efficiency for single beam studies

• The notion of a GCR simulator is not new – it has been discussed for decades, and was always a development goal of the space radiobiology program
 - What is new is that the accelerator facility has matured to a point where preliminary implementation is now realistic
Overview

• The GCR simulator at NSRL is intended to deliver deep space, shielded tissue environment to biological targets in a laboratory setting
 - Used to study a range of space radiobiology questions

• Many of the details associated with GCR simulator design will depend on biological question and endpoints being studied

• Some aspects may be “standardized” across experiments
 - Enables subsequent cross comparisons and validation
 - Saves time and cost

• Two aspects allow for some standardization
 - Reference field specification: which environment are we simulating with beams
 - General beam selection strategy: how can we pick beams to simulate the environment
External and Internal Fields

- The external GCR field is modified as it passes through shielding and tissue
 - Slowing down due to atomic processes
 - Attenuation and breakup of heavy ions due to nuclear collisions
 - Secondary particle production
 - Plot below (right) for minimal shielding (5 g/cm²) and average tissue (30 g/cm²)

Selected particle spectra in free space (left pane) and behind 5 g/cm² of aluminum and 30 g/cm² of water (right pane) during solar minimum
External and Internal Fields

- An important question is whether to design the simulator using the free space, external field or local tissue field.
External and Internal Fields

- **External field approach**

 Beams selected to represent external, free space field before shielding

- **Local tissue field approach**

 Beams selected to directly represent shielded tissue field
External and Internal Fields

• Facility constraints have a significant impact on choosing the approach

• NSRL Energy constraints
 - Current: protons (2.5 GeV) and heavier ions (1.0 GeV/n)
 - Upgrade: protons (4.0 GeV) and heavier ions (1.5 GeV/n)

• Table below gives fraction of effective dose delivered by energies within NSRL energy constraints
 - Female phantom behind 20 g/cm² of aluminum shielding during solar minimum
 - Other scenarios and exposure quantities lead to qualitatively similar results

<table>
<thead>
<tr>
<th>Energy cutoff description</th>
<th>Free space approach</th>
<th>Local field approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current NSRL energy constraints</td>
<td>47%</td>
<td>88%</td>
</tr>
<tr>
<td>Upgrade NSRL energy constraints</td>
<td>63%</td>
<td>91%</td>
</tr>
</tbody>
</table>
External and Internal Fields

• Results indicate that energy constraints at NSRL limit the feasibility of simulating the external, free space GCR field
 - Missing ~half of the exposure

• GCR simulator will focus on directly reproducing the shielded tissue field

Local tissue field approach

Beams selected to directly represent shielded tissue field

Biological target
Reference Field Specification

- Shielded tissue field in space depends on many factors
 - Tissue location within body
 - Shielding material, thickness, and geometry
 - Solar activity

- Looked at variation associated with each of these factors and concluded that a single reference field for deep space can be identified

- Observed variation is within
 - GCR environmental model uncertainty (at least 20%)
 - Combined physics and transport modelling uncertainty
 - Experimental design uncertainty: representing broad GCR spectrum with relatively few mono-energetic beams
Variation in Local Field

- Variation in local tissue field will be examined as a function of
 - Tissue location
 - Shielding configuration
 - Shielding material
 - Solar activity

- Models
 - GCR environment computed with the 2010 Badhwar-O’Neill GCR model
 - Solar minimum: June 1976
 - Solar maximum: June 2001
 - All results shown for solar minimum except for comparisons focused on solar activity
 - HZETRN transport code with π/EM and bi-directional neutron transport (ray-by-ray)
 - Female phantom (FAX)
 - NASA-Q and effective dose tissue weights implemented where applicable
 - Q-factor uncertainties from NSCR2012 implemented where applicable
Variation in Local Field

• Will consider spherical aluminum shielding (5 g/cm², 20 g/cm², 40 g/cm²) along with four realistic shielding geometries
 - Habitat demonstration unit (HDU) adapted for 1-year free space mission
 - Cislunar vehicle concept
 - ISS location in US Lab near overhead racks
 - STS location in mid-deck (often referred to as DLOC 2)
Variation in Local Field – Shielding

- Plots below show tissue doses and dose equivalents behind shielding
 - Variation is within even the GCR environmental model uncertainty (~±20%)
 - Increased variation in dose equivalent associated with HZE breakup
 - Bladder, BFO and breast appear as representative tissues
 - 20 g/cm² aluminum appears as representative shielding
Variation in Local Field – Shielding

- Shielding material also contributes to variation in exposure quantities
 - Current technology suggests deep space vehicle will be comprised of mainly aluminum with some parasitic shielding mass (polyethylene)
 - Plot below shows tissue exposure values behind 20 g/cm² of aluminum or polyethylene
 - Variation is within experimental design uncertainty
Variation in Local Field – Shielding

- Plots below show relative contribution to dose and dose equivalent for various charge groups
 - Protons and alphas account for more than half of the exposure
 - Breakup of HZE component can be clearly seen in breast dose equivalent
 - Relative contributions of particles types show some variation, but likely within experimental design uncertainty
Variation in Local Field – Shielding

- LET spectral comparisons in different shielding configurations and tissues
 - Variation associated with shielding appears small below 200 keV/µm
 - Variation is likely within experimental design uncertainty
 - Spectra appear as qualitatively similar
Variation in Local Field – Solar Activity

- During solar max, the GCR spectrum is attenuated below several GeV/n
 - Plots below compare solar minimum and solar maximum results
 - Solar maximum results have been scaled by 1.85
 - Constant factor of 1.85 nearly corrects discrepancies associated with solar activity across the entire LET domain
 - Suggests main difference between solar extremes is magnitude of exposure, not the shape of the LET spectrum
Reference Field Specification

- Reference field specification for GCR simulator
 - Female BFO (blood forming organ) behind 20 g/cm² spherical aluminum shielding during solar minimum conditions

<table>
<thead>
<tr>
<th></th>
<th>Avg. hits per cell nucleus</th>
<th>Dose (mGy)</th>
<th>Dose Eq. (mSv)</th>
<th><Q></th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen</td>
<td>126</td>
<td>86.0</td>
<td>131.1</td>
<td>1.5</td>
</tr>
<tr>
<td>helium</td>
<td>7</td>
<td>22.5</td>
<td>93.8</td>
<td>4.2</td>
</tr>
<tr>
<td>HZE</td>
<td>0.5</td>
<td>8.9</td>
<td>73.3</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Annual reference field quantities
General Beam Selection Strategy

- Plots below show physical quantities that describe the charged particle components of the reference field
 - neutrons and π/EM component not included

Hydrogen and helium energy spectra

Heavy ion (Z > 2) LET spectrum
General Beam Selection Strategy

- Hydrogen and helium are explicitly represented in energy domain and HZE ions are collectively represented within the LET spectrum
 - Greater emphasis/fidelity in simulator design for hydrogen and helium
 - Account for 81% of dose and 67% of dose equivalent
 - Other ions could be explicitly represented as well (trade against time/cost)
For hydrogen and helium
- Break energy domain into two pieces
- Low energy particles that might stop in mouse (<150 MeV/n)
- Higher energy particles that will pass through mouse (>150 MeV/n)
General Beam Selection Strategy

- For hydrogen and helium
 - Bin the low and high energy domains separately
 - Each bin represented by a mono-energetic ion beam
 - Protons and alphas used to represent hydrogen and helium, respectively
General Beam Selection Strategy

- High energy beams provided directly from accelerator (i.e. energy switching)
- Low energy beams achieved by using polyethylene degraders
 - Similar procedure as previously implemented for SPE simulator
 - Allows finer resolution for stopping particles thereby reducing exposure gradients within animals
• High energy beams provided directly from accelerator (i.e. energy switching)
• Low energy beams achieved by using polyethylene degraders
 - Similar procedure as previously implemented for SPE simulator
 - Allows finer resolution for stopping particles thereby reducing exposure gradients within animals
General Beam Selection Strategy

- A similar binning procedure is used to represent HZE component
 - Bin the LET domain for HZE particles
 - Each bin represented by mono-energetic HZE beam
 - Can use look-up tables and energy constraints to determine which ion/energy to use for each bin
General Beam Selection Strategy

- Energies are now constrained below
 - Do not want rapid variation (Bragg peaks) occurring within animals
 - Not implementing degrader approach for each heavy ion (time/cost constraints)
 - Ions need to be energetic enough to reach at least ~9 cm
General Beam Selection Strategy

- General beam selection strategy is now set
 - Allows for precise beam specification (ion, energy, intensity) tied directly to physical spectrum of reference field
 - Convergence testing performed to see how many bins are needed
 - Convergence testing also provides cost-benefit information of using more beams
General Beam Selection Strategy

• Lower energy portion of hydrogen and helium spectra is being represented by using polyethylene degrader system
 - Similar procedure as previously implemented for SPE simulator
 - Need to determine number of low energy bins required to achieve reasonably smooth internal exposure profiles

• Considered an ellipsoidal tissue phantom to represent mouse
 - Mass: 33 grams, major axis length: 7 cm, minor axis length: 3 cm
 - Exposed phantom to isotropic irradiation of low energy proton beams (<150 MeV/n)
 - Systematically increased number of bins used to represent low energy spectrum
General Beam Selection Strategy

- Plots below show dose profiles within phantom
 - Internal variation measured as relative difference between min/max values
 - Local variation appears to be controlled with as few as 10 bins
 - Using more than 25 bins starts to reach limits of polyethylene degrader fidelity (0.025 cm)
Example Beam Selection

- Remaining analyses will consider the following case
 - 10 low energy bins for protons and alphas
 - 5 high energy bins for protons and alphas
 - 14 LET bins for HZE component
Example Beam Selection

- Internal exposure variation in ellipsoidal phantom under isotropic irradiation is shown below
 - Relatively smooth internal dose profile
 - Previously established that 10 low energy bins for hydrogen and helium are sufficient
 - Higher energy hydrogen and helium beams will not range out in phantom
 - HZE beams explicitly chosen to reach at least 9 cm

±4% variation in internal dose values
Example Beam Selection

- Left pane shows the differential LET spectrum of reference field compared to spectrum induced by beams at center of phantom (isotropic irradiation)
 - Qualitatively good agreement across the LET spectrum
Example Beam Selection

- Right pane shows the differential $X_{tr} = (Z'/\beta)^2$ spectrum of reference field compared to spectrum induced by beams at center of phantom (isotropic irradiation)
 - $(Z'/\beta)^2$ spectrum provides somewhat of an independent check since beam selection was not guided by this quantity
 - Qualitatively good agreement across the $(Z'/\beta)^2$ spectrum
Example Beam Selection

- Tables below show integrated quantities from reference field and beams
 - Cell nucleus hits computed by assuming cross sectional area of 100 µm²
 - Hits/cell results consistent with previous calculations by Curtis et al.

<table>
<thead>
<tr>
<th></th>
<th>Avg. hits per cell nucleus</th>
<th>Dose (mGy)</th>
<th>Dose Eq. (mSv)</th>
<th><Q></th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen</td>
<td>126.0</td>
<td>86.0</td>
<td>131.1</td>
<td>1.5</td>
</tr>
<tr>
<td>helium</td>
<td>7.0</td>
<td>22.5</td>
<td>93.8</td>
<td>4.2</td>
</tr>
<tr>
<td>HZE</td>
<td>0.5</td>
<td>8.9</td>
<td>73.3</td>
<td>8.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Avg. hits per cell nucleus</th>
<th>Dose (mGy)</th>
<th>Dose Eq. (mSv)</th>
<th><Q></th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen</td>
<td>105.0</td>
<td>71.2</td>
<td>96.2</td>
<td>1.3</td>
</tr>
<tr>
<td>helium</td>
<td>4.5</td>
<td>16.3</td>
<td>50.0</td>
<td>3.0</td>
</tr>
<tr>
<td>HZE</td>
<td>0.3</td>
<td>8.3</td>
<td>65.5</td>
<td>7.9</td>
</tr>
</tbody>
</table>
Summary

• Current (and upgraded) facility constraints limit the ability to simulate the external, free space field directly
 - Proposed simulator design instead focuses on reproducing the local tissue field

• Variation in the induced tissue field was examined, and it was determined that a single reference environment for deep space is reasonable at this time

• An approach for beam selection in the simulator was presented
 - The approach is tied directly to the reference environment flux and allows systematic improvements to be made
 - Spectral quantities and integrated quantities are reasonably well represented
 - Optimization procedures could be developed to improve overall agreement across all quantities

• Drawbacks of the proposed strategy include
 - Possible lower energy constraints for HZE particles associated with animal models
 - Neutron and π/EM components
 - These drawbacks could be addressed by augmenting the existing design if necessary
Backup: Example Beam Info

- Proton beam information for example study

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
<th>Energy (MeV/n)</th>
<th>LET (kev/μm)</th>
<th>(Z*/β)²</th>
<th>Intensity (#/cm²-year)</th>
<th>Dose (mGy/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.4</td>
<td>6.4</td>
<td>63.8</td>
<td>1.6 x 10⁵</td>
<td>1.48</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10.2</td>
<td>5.0</td>
<td>46.7</td>
<td>2.5 x 10⁵</td>
<td>1.83</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14.0</td>
<td>3.8</td>
<td>34.3</td>
<td>4.0 x 10⁵</td>
<td>2.25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>19.2</td>
<td>3.0</td>
<td>25.2</td>
<td>6.3 x 10⁵</td>
<td>2.73</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>26.4</td>
<td>2.3</td>
<td>18.6</td>
<td>9.8 x 10⁵</td>
<td>3.30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>36.2</td>
<td>1.8</td>
<td>13.7</td>
<td>1.5 x 10⁶</td>
<td>3.91</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>49.6</td>
<td>1.4</td>
<td>10.2</td>
<td>2.2 x 10⁶</td>
<td>4.52</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>68.0</td>
<td>1.1</td>
<td>7.7</td>
<td>3.2 x 10⁶</td>
<td>5.02</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>93.3</td>
<td>0.8</td>
<td>5.8</td>
<td>4.3 x 10⁶</td>
<td>5.30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>128.1</td>
<td>0.7</td>
<td>4.4</td>
<td>5.4 x 10⁶</td>
<td>5.31</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>205.0</td>
<td>0.5</td>
<td>3.1</td>
<td>1.4 x 10⁷</td>
<td>9.62</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>383.2</td>
<td>0.3</td>
<td>2.0</td>
<td>1.7 x 10⁷</td>
<td>8.53</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>716.0</td>
<td>0.26</td>
<td>1.5</td>
<td>2.1 x 10⁷</td>
<td>7.99</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1337.9</td>
<td>0.23</td>
<td>1.2</td>
<td>2.1 x 10⁷</td>
<td>6.04</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2500.0</td>
<td>0.22</td>
<td>1.1</td>
<td>1.6 x 10⁷</td>
<td>5.35</td>
</tr>
</tbody>
</table>
Backup: Example Beam Info

- Alpha beam information for example study

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
<th>Energy (MeV/n)</th>
<th>LET (kev/µm)</th>
<th>((Z^\ast/\beta)^2)</th>
<th>Intensity (#/cm²-year)</th>
<th>Dose (mGy/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>7.4</td>
<td>25.6</td>
<td>255.3</td>
<td>1.4 x 10⁴</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>10.2</td>
<td>19.8</td>
<td>186.9</td>
<td>2.1 x 10⁴</td>
<td>0.61</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>14.0</td>
<td>15.4</td>
<td>137.0</td>
<td>3.2 x 10⁴</td>
<td>0.72</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>19.2</td>
<td>11.9</td>
<td>100.7</td>
<td>4.9 x 10⁴</td>
<td>0.86</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>26.4</td>
<td>9.2</td>
<td>74.2</td>
<td>7.4 x 10⁴</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>36.2</td>
<td>7.1</td>
<td>54.9</td>
<td>1.1 x 10⁵</td>
<td>1.12</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>49.6</td>
<td>5.5</td>
<td>40.9</td>
<td>1.5 x 10⁵</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>68.0</td>
<td>4.3</td>
<td>30.6</td>
<td>2.0 x 10⁵</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>93.3</td>
<td>3.4</td>
<td>23.2</td>
<td>2.5 x 10⁵</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>128.1</td>
<td>2.7</td>
<td>17.7</td>
<td>2.9 x 10⁵</td>
<td>1.14</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>185.2</td>
<td>2.1</td>
<td>13.2</td>
<td>4.7 x 10⁵</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>282.3</td>
<td>1.6</td>
<td>9.8</td>
<td>6.0 x 10⁵</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>430.3</td>
<td>1.3</td>
<td>7.5</td>
<td>7.5 x 10⁵</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>656.0</td>
<td>1.1</td>
<td>6.1</td>
<td>8.4 x 10⁵</td>
<td>1.33</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1000.0</td>
<td>1.0</td>
<td>5.2</td>
<td>8.2 x 10⁵</td>
<td>1.16</td>
</tr>
</tbody>
</table>
Backup: Example Beam Info

- HZE beam information for example study

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
<th>Energy (MeV/n)</th>
<th>LET (kev/µm)</th>
<th>(Z*/β)²</th>
<th>Intensity (#/cm²-year)</th>
<th>Dose (mGy/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3</td>
<td>736</td>
<td>2.4</td>
<td>13.1</td>
<td>2.5 x 10⁴</td>
<td>0.09</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>331</td>
<td>3.3</td>
<td>19.8</td>
<td>1.9 x 10⁴</td>
<td>0.09</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>189</td>
<td>4.6</td>
<td>29.3</td>
<td>1.1 x 10⁴</td>
<td>0.08</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>788</td>
<td>6.4</td>
<td>35.5</td>
<td>4.4 x 10⁴</td>
<td>0.41</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>887</td>
<td>9.0</td>
<td>48.9</td>
<td>7.9 x 10⁴</td>
<td>1.03</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>365</td>
<td>12.6</td>
<td>74.7</td>
<td>6.4 x 10⁴</td>
<td>1.18</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>644</td>
<td>17.5</td>
<td>98.7</td>
<td>4.3 x 10⁴</td>
<td>1.11</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>306</td>
<td>24.5</td>
<td>148.3</td>
<td>2.3 x 10⁴</td>
<td>0.84</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>590</td>
<td>34.2</td>
<td>194.2</td>
<td>1.7 x 10⁴</td>
<td>0.85</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>988</td>
<td>47.8</td>
<td>256.9</td>
<td>1.1 x 10⁴</td>
<td>0.76</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>755</td>
<td>66.7</td>
<td>369.4</td>
<td>5.7 x 10³</td>
<td>0.55</td>
</tr>
<tr>
<td>39</td>
<td>19</td>
<td>781</td>
<td>93.2</td>
<td>514.0</td>
<td>3.6 x 10³</td>
<td>0.48</td>
</tr>
<tr>
<td>47</td>
<td>22</td>
<td>682</td>
<td>130.2</td>
<td>728.1</td>
<td>3.0 x 10³</td>
<td>0.56</td>
</tr>
<tr>
<td>56</td>
<td>26</td>
<td>682</td>
<td>181.8</td>
<td>1016.8</td>
<td>2.8 x 10³</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Backup: External and Internal Fields

- Plots below show fraction of effective dose as a function of boundary and local energies for thicknesses of aluminum shielding
 - Current NSRL constraints appear to be restrictive if external, free space field is simulated
 - Appears energy domain of local tissue field can be well represented
Backup: Sensitivity Analysis

- Plots below show relative contribution to dose and dose equivalent from various particles in the reference field
- $Z = 1$ and $Z = 2$ contributions dominate
 - 81% of dose and 67% of dose equivalent
- $Z > 2$ contributes 7% to dose and 21% to dose equivalent
 - $Z = 6, 7, 8, 10, 12, 14, 20, 26$ appear amplified compared to other heavy ions
Backup: Sensitivity Analysis

- Another point to consider is the self-shielding provided by an animal model
 - May want to avoid Bragg peaks or rapid exposure gradients within mice
 - Localized tissue exposures may be difficult to reproduce in subsequent studies
 - Table below gives energies needed to reach 9 cm

<table>
<thead>
<tr>
<th>Z</th>
<th>E to reach 9 cm (MeV/n)</th>
<th>E to reach 80 cm (MeV/n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109</td>
<td>393</td>
</tr>
<tr>
<td>2</td>
<td>109</td>
<td>393</td>
</tr>
<tr>
<td>6</td>
<td>204</td>
<td>806</td>
</tr>
<tr>
<td>7</td>
<td>224</td>
<td>898</td>
</tr>
<tr>
<td>8</td>
<td>242</td>
<td>987</td>
</tr>
<tr>
<td>10</td>
<td>277</td>
<td>1166</td>
</tr>
<tr>
<td>12</td>
<td>308</td>
<td>1336</td>
</tr>
<tr>
<td>14</td>
<td>339</td>
<td>1499</td>
</tr>
<tr>
<td>26</td>
<td>475</td>
<td>2334</td>
</tr>
</tbody>
</table>
BACKUP: LET and X_{tr} spectra

- LET spectrum is computed from flux

$$\frac{d\phi(L)}{dL} = \sum_Z \frac{d\phi(Z, E)}{dE} \frac{dE}{dL} = \sum_Z \frac{d\phi(Z, E)}{dE} \frac{dL}{dE}^{-1}$$

- X_{tr} spectrum is computed from flux

$$\frac{d\phi(X_{tr})}{dX_{tr}} = \sum_Z \frac{d\phi(Z, E)}{dE} \frac{dE}{dX_{tr}} = \sum_Z \frac{d\phi(Z, E)}{dE} \frac{dX_{tr}}{dE}^{-1}$$
Backup: Discussion

• Proposed strategy for beam selection provides a systematic approach for reproducing the reference field LET spectrum and related quantities
 - Sensitivity analyses and energy constraints provide supplementary information
 - Integrated quantities such as a dose, dose eq., and $<Q>$ well represented
 - Track structure spectrum reasonably well represented even though it wasn’t targeted
 - Optimization strategies could be pursued to improve overall agreement across all quantities considered

• Proposed strategy does have some drawbacks
 - Track structure characteristics
 - Lower energy constraint associated with ion stoppage in animal model
 - Neutron and π/EM components
• Track structure
 - Proposed strategy represents $F(X_{tr})$ spectrum reasonably well
 - Due to energy constraints, most beam energies were focused in the 200 MeV/n – 600 MeV/n range
 - Unclear if track structure characteristics of simulator will closely represent what might be expected in space
 - Especially important given ~half of the exposure is delivered by energies below 100 MeV/n
Backup: Discussion

- Lower energy constraint
 - Lower energy ions contribute significantly to exposure but are not explicitly included in simulator design
 - For cell cultures, the lower energy constraint could be relaxed
 - Proposed strategy could be modified to include a spectrum of low energy ions (degraders) but would require further analysis to integrate into the simulator design
 - Could leave design as-is and augment with increased complexity at a later date
Backup: Discussion

• Neutrons
 - Neutron spectrum of reference field shown below
 - Neutron dose is defined here as energy deposited by heavy target fragments ($Z > 2$) produced in nuclear collisions (elastic recoil and inelastic products)
 - Most of the exposure comes from neutrons between 1 MeV and 1 GeV
Backup: Discussion

• Neutron beam not currently available at NSRL
 - Even if it were, a pure neutron spectrum would induce a different exposure than what is defined presently

• Could represent heavy target fragment spectrum in some way, but might be difficult
 - Could use models to predict heavy target fragment spectrum (<10 MeV ions) and implement degraders to provide continuous spectrum
 - Could replace low energy target fragments with high energy ions with much higher Z value (i.e. same LET)

• Could also just ignore neutron component for now (and π/EM cascade)
 - Neutrons contribute small amount to dose and 7% to dose equivalent for reference environment
 - Likely this much error in any simulator design
 - Could again view the neutron and π/EM components as augmentations to the existing design to be added at a later date