LIDAR OBSERVATIONS OF RAMAN SCATTERING FROM SO2

IN A POWER PLANT STACK PLUME

By M. L. Brumfield, S. H. Melfi, and R. W. Storey, Jr.

ABSTRACT

LIDAR techniques have been successfully applied to the detection of the Raman backscatter from SO₂ in the plume of a 200 megawatt coal-burning electrical-generating plant from a distance of 210 meters. The LIDAR system used consists of a 61 cm diameter, f/4 Newtonian telescope and 1.0 - 1.5 joulesper-pulse, 1 pulse-per-second ruby laser. Narrow band interference filters are used to select the 7546A v_1 vibrational line of SO₂. The signal from a photomultiplier tube was sequentially applied to each 254 nsec wide channel of a 15-channel photon counting system, resulting in a direct correlation between channel number and range increment. Photon counts were accumulated from the backscatter of a number of laser pulses (typically 50 or 100), and the accumulated counts per channel printed on paper tape.

One sequence of measurements was made during a two-hour period while the plant electrical output was being reduced by approximately 50%. Although the Raman system had not been quantitatively calibrated, the LIDAR data correlated well with the varying plant electrical output. N_2 scattering observations were also made and an approximate quantitative SO_2 concentration obtained by ratioing the SO_2 data to N_2 data. This ratio compared well to the in-situ measurements made during the same period by Environmental Protection Agency sampling instruments.

70