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Attention-related human performance limiting states (AHPLS) can cause pilots to lose 

airplane state awareness (ASA), and their detection is important to improving commercial 

aviation safety.  The Commercial Aviation Safety Team found that the majority of recent 

international commercial aviation accidents attributable to loss of control inflight involved 

flight crew loss of airplane state awareness, and that distraction of various forms was 

involved in all of them.  Research on AHPLS, including channelized attention, diverted 

attention, startle / surprise, and confirmation bias, has been recommended in a Safety 

Enhancement (SE) entitled “Training for Attention Management.”  To accomplish the 

detection of such cognitive and psychophysiological states, a broad suite of sensors has been 

implemented to simultaneously measure their physiological markers during high fidelity 

flight simulation human subject studies.  Pilot participants were asked to perform 

benchmark tasks and experimental flight scenarios designed to induce AHPLS.  Pattern 

classification was employed to distinguish the AHPLS induced by the benchmark tasks.  

Unimodal classification using pre-processed electroencephalography (EEG) signals as input 

features to extreme gradient boosting, random forest and deep neural network multiclass 

classifiers was implemented.  Multi-modal classification using galvanic skin response (GSR) 

in addition to the same EEG signals and using the same types of classifiers produced 

increased accuracy with respect to the unimodal case (90% vs. 86%), although only via the 

deep neural network classifier.  These initial results are a first step toward the goal of 

demonstrating simultaneous real time classification of multiple states using multiple sensing 

modalities in high-fidelity flight simulators.  This detection is intended to support and 

inform training methods under development to mitigate the loss of ASA and thus reduce 

accidents and incidents. 

I. Introduction 

TTENTION-related human performance limiting states (AHPLS) can cause pilots to lose airplane state 

awareness (ASA), and their detection is important to improving commercial aviation safety.  The Commercial 

Aviation Safety Team (CAST) reviewed international airplane accidents between 2001 and 2010 and attributed 18 

of them to loss of control inflight (LOC-I).  They found that 13 of those 18 accidents, accounting for more than half 

of the fatalities resulting from LOC-I, involved flight crew loss of airplane state awareness.  Further, they found that 

distraction was involved in all 18 of the LOC-I events (CAST, 2014a).  Distraction was divided into two types: 

channelized and diverted attention.  When diverted, crew were distracted from aviating by actions and thoughts 

associated with decision making (sometimes under high workload).  When channelized, crew focused on one 

instrument or response to the exclusion of other important sources of information.  Additionally, confirmation bias 

was described as making a decision based on faulty information or incorrect reasoning which favors one 

understanding of an event.  As a result, research on AHPLS including channelized attention, diverted attention, and 

confirmation bias has been recommended in a Safety Enhancement (SE) entitled “Training for Attention 

Management” (CAST, 2014b).  The startle reflex and the surprise response of the sympathetic nervous system 
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(Rammirez-Moreno & Sejnowski, 2012) are also included in the SE.  To accomplish the detection of such cognitive 

and physiological states, the Crew State Monitoring team at the NASA Langley Research Center (LaRC) has 

implemented a broad suite of sensors to simultaneously measure their psychophysiological markers in high fidelity 

flight simulation studies.  The goal is to demonstrate simultaneous real time classification of multiple states using 

multiple sensing modalities in high-fidelity flight simulators.  This detection is intended to support and inform 

training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents. 

The detection of these states will aid understanding of the phenomena behind their occurrence in flight, and 

enable the development of ground-based training methods to mitigate attentional performance decrement (Hockey, 

et al., 2003).  Attentional effort can be increased to improve attentional performance (Sarter, et al., 2006) if pilots 

know when to apply these efforts to support situational awareness without causing other detrimental effects.  

Analogous to training to learn to recognize one’s own reaction to and symptoms of hypoxia or fatigue and respond 

appropriately, training methods will be devised to improve self-monitoring of and response to one’s own attentional 

performance.   

Channelized attention may be detected using the combination of neurological indicators of attention and 

differences between actual versus expected overt behavior during specific phases of flight.  The combination of 

information from such separate measures or converging indicators (Cowings et al. 2007) is intended to improve  the 

discrimination of optimal states of attention from non-optimal states of attention.  Thus, psychophysiological and 

behavioral data fusion efforts are a key to success.  The use of multi-modal psychophysiological measures as 

classifier input features is predicted to produce classifiers with greater accuracy of state prediction than those 

produced using uni-modal measures.  This paper reports the initial results from our first human subject flight 

simulation study. 

II. Background 

The use of multiple simultaneous psychophysiological measures for emotional and cognitive state prediction, as 

reviewed recently by Novak, et al. (2012), is emerging in the literature but not yet widespread.  Multi-modal 

wireless sensor systems are commercially available, and much work has been done to predict workload from 

physiological measures, e.g. Wilson et al., 2003.  However, prior work has not fully investigated the classification 

accuracy for the particular states of interest to CAST based on multi-modal sensing in a real-time system using 

operationally-relevant, realistic flight scenarios.  Further, data fusion methods for classifying psychological states 

from psychophysiological measures have not yet matured to universal acceptance (Novak, et al., 2012).  Although 

researchers applying psychophysiological measures to the study of emotional experience in the real world have 

specified key considerations to serve as guidelines for studying psychological states in operational contexts 

(Wilhelm & Grossman, 2010), much work remains to be done regarding the validation of state detection and 

classifier generalizability from controlled laboratory environments to more realistic situations (Kingstone, et al., 

2003).  Furthermore, a balance must be struck between implementation in realistic uncontrolled operational 

environments and the use of laboratory-based psychological tasks so that the contribution of each sensor to the 

measurement of each state may be understood.  This is important to determine the generalizability of a classification 

system across tasks, to the objective selection of sensors for operational systems designed for use outside the 

laboratory, and to the understanding of the phenomena behind the induction of AHPLS.   

Data for the present report were collected during a human subject study executed in a fixed base flight simulator.  

Multiple simultaneous psychophysiological measures were integrated as a means of detecting AHPLS during 

benchmark tasks for classifier model training and during experimental flight scenarios for prediction testing.  The 

experimental flight scenarios will be revised for future presentation in a motion base flight simulator.  Analysis 

efforts begin with an initial assessment of these methods in the greater context of plans to further explore 

classification and analysis methods toward testing this technology in higher-fidelity flight simulators.  Data fusion 

and state classification will be implemented in multiple ways for comparison purposes and for informing future 

operational system development.  A state prediction will be made from among the states of interest using (1) each 

sensing modality (uni-modal classifier models), (2) all sensing modalities (a single multi-modal classifier model), 

and (3) the use of multiple uni-modal and multimodal classifier outputs in higher-level state classification.  Prior 

work classifying state based on EEG signals (Li, 2015) may be leveraged to address the problems of individual 

variation among participants and to address situations where truth labels are unavailable.  The current paper initially 

reports the ability of classifier models to discriminate between cognitive states as induced by the benchmark tasks.  

Initial uni-modal and multi-modal results were compared, both using a high-level combination of the outputs from 

three different classifiers. 
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If successful, a prototype system will be developed for integration and hardening toward further validation and 

potential use in relevant operational environments.  Also, knowledge of which classifier input feature carried the 

most weight in creating each classifier model can inform sensor down-selection.  For example, such weighting can 

be used to determine the location of a single-site electroencephalography (EEG) electrode instead of a multi-site 

EEG array.  Similarly, accuracy can be determined with the input from each sensing modality left out in turn from 

higher-level classification.  In this way, decisions may be made for each sensing modality and feature regarding 

further investment in sensor obtrusiveness, crew acceptance efforts and training simulator or eventually cockpit 

integration based on the value it brings to overall state prediction accuracy.  Reducing sensor obtrusiveness and 

computational overhead is desirable for implementation in operational contexts. 

III. Human Subject Study Methods 

Twelve regional air transport pilots (one female) were asked to perform tasks in a fixed base flight simulator.  

All participants consented to take part in the study as approved by the Institutional Review Board of the NASA 

Langley Research Center.  The tasks included: resting tasks, benchmark tasks designed to induce AHPLS and 

low/high workload conditions, and experimental flight scenarios.  The experimental flight scenarios were designed 

with variations in task load to induce variations in situation awareness, workload, and stress that may be associated 

with AHPLS. 

A. Data Collection 

To probe both the brain and the sympathetic nervous system, psychophysiological sensors were applied to 

measure electroencephalography (EEG) signals using an Advanced Brain Monitoring X24 EEG System (Berka, et 

al., 2007), and to measure electrocardiogram (EKG), respiration (Resp.), and galvanic skin response (GSR) via a 

Mind Media, BV. Nexus-10 Mark II system passively throughout all task and simulated flight performance.  Pilot 

behavior was recorded in the flight simulator via a Smart Eye, AB. eye tracking system and simulator flight control 

inputs.  Two self-report questionnaires were administered after each task: the subjective NASA Task Load Index 

was used to evaluate each participant’s workload during each task (Hart & Staveland, 1988), and the qualitative 

NASA Situation Awareness Rating Technique (SART) (Taylor, 1990) was used to assess situation awareness. 

B. Signal Pre-Processing 

All measured time series were recorded using MAPPS (EyesDx, Inc., Coralville, IA), a software suite designed 

to collect aircraft/simulator state, event marker, and pilot psychophysiological and behavioral data.  The software 

time synchronizes all data channels for real-time review of data, as well as post-hoc analysis.  Eight mono-polar 

EEG signals were reduced to examine frequency domain components via spectral analysis, heart rate variability 

analysis was derived from the EKG (Hamilton, 1987), and skin conductance responses were taken from GSR signal 

to generate normalized classifier input features from the time series measurements.. 

C. Benchmark Tasks 

Use of the benchmark tasks was modeled after 

the methods of Hirshfield, et al. (2009).  The 

selected tasks, listed in Table 1, were used to 

induce AHPLS under controlled conditions, and 

were chosen for high likelihood to induce these 

experiences in isolation and with the full 

knowledge of the participant (except for the startle 

/ surprise task and the high versus low workload 

condition).  The benchmark tasks lasted for 6 

minutes each.  For baseline rest, the participants 

were asked to sit quietly without daydreaming.  

For Channelized Attention, a personal-computer-

based version of the game Tetris (Fairclough & 

Gilleade, 2012) was employed and participants 

were instructed to remain completely focused on 

playing the game.  To induce startle and surprise, 

the primary flight display in the simulator was inverted unexpectedly during a flight navigation task.  For Diverted 

attention, the participants were asked to respond with a button press when bars of different heights were presented 

on the left-hand side of the screen (Parasuraman & Davies, 1977).  On the right-hand side, periodically (every 20 to 

AHPLS Task 

Baseline rest 
Rest, Eyes Open looking at 

crosshair 

Channelized Attention Tetris 

Startle / Surprise 
unexpected primary flight 

display inversion 

Diverted Attention Vigilance Task with Math 

High Workload, flight-like 

complex multi-task 
MATB High Workload 

Low Workload, flight-like 

complex multi-task 
MATB Low Workload 

 

Table 1. Benchmark Tasks. 
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30 seconds) a math task appeared which required their immediate attention prior to their return to monitoring for 

bar-height targets.  The bar height patterns to be compared were presented simultaneously, or successively with a 

short pause between them necessitating the activation of working memory.  Finally, high and low workload was 

induced with a flight-like multi-task (the MATB*) used to simulate nominal flight in an optimal attentional state 

(Santiago-Espada, Myer, Latorella, & Comstock, 2011).  

D. Classification Methods 

Measurements made during the benchmark tasks provided required ground truth for training state classifiers 

using supervised machine learning techniques.  Classifier models will be trained to recognize pilot state during the 

experimental flight scenario trials based on patterns of the physiological signals measured during the benchmark 

tasks.  In this way, the benchmark data will be used without a preconceived model of expected physiological signal 

change.  Classifier model training data will be that which was collected during both baseline resting and benchmark-

task-induced states, enabling binary (two-class: resting vs. channelized) classification at each time point, or multi-

class distinction of the AHPLS (channelized or diverted) from the low-workload state, as reported here.  The state 

classifiers then will be used to predict operator state during each experimental flight scenario or segment.  The true 

or known state will be used to determine classifier prediction accuracy.  This ground truth for cognitive state during 

the experimental scenarios will be indicated by the convergence of physical behavior, missed manipulation checks, 

subjective self-report, eye tracking results, and flight technical performance (taking into account what is expected 

for the specific phase of flight based on subject matter expertise).  In this way, the effectiveness of the flight 

scenario to induce the intended state can be verified.  

Three classifiers were trained with the first 50 % of the signals.  The next 25 % was used for validation, and the 

final 25 % was used for testing.  The three classifiers were: gradient boosting (XGB†), a deep neural network (DNN) 

(Keras‡), and a Random Forest classifier (Scikit-Learn§).  Gradient boosting is an ensemble machine learning 

technique which fits many classification and regression trees (CART) to the input data (Friedman, 2001).  CARTs 

are trained via the boosting method where multiple weak models are eventually combined into a single, effective 

model.  DNNs are supervised machine learning models made up of many layers of artificial neural network nodes 

(Srivastava et al., 2014).  These deep layers are capable of learning features from training data which improve model 

classification performance.  The DNNs were trained with a technique known as dropout to prevent overfitting on 

training data.  Random forest is another ensemble model which trains multiple weak decision tree classifiers that are 

combined into a single, robust model (Breiman, 2001).  Random forest decision trees are trained using feature 

bootstrap aggregation, or bagging.  The overall prediction was based on a simple average of the three results.   

IV. Results and Discussion 

Using multi-modal psychophysiological measures as classifier input features was predicted to produce classifiers 

with greater accuracy of cognitive state prediction than those produced using uni-modal measures.  To determine if 

the results are in agreement with the prediction, the accuracy of classification for each of three states (channelized 

attention, diverted attention and low workload flight) for the uni-modal physiological measurement modality of EEG 

was reported and compared to the accuracy obtained using multi-modal classification for EEG and GSR.  Confusion 

matrices were generated to assess the false positive rates and predictive power of the classifiers.  These are presented 

in Tables 2 and 3.  Plotted in Fig. 1 for one participant are the true positive and false negative rates with and without 

multi-modal features.  The addition of the GSR signal as a feature to the EEG features resulted in a 7% improvement 

in correct classifications for the deep neural network model.  The EEG-only model was 82 % accurate, while the 

addition of the GSR feature improved the accuracy to 89%.  As a result, overall accuracy rose from 86% to 90%.  

The addition of GSR to the other two classifiers did not improve accuracy.  In the GSR case, only the diverted 

attention successive case was used.  

Both models are reliable for distinguishing the low workload and channelized attention benchmark states.  The 

classifier models are generally less reliable for diverted attention states.  Diverted attention may be more difficult to 

predict because of the periodic nature of the diversion, and assignment of the truth labels to account for time spent 

diverted to performing the math task should be refined. 

                                                           
* Multi-Attribute Task Battery available at: http://matb.larc.nasa.gov/ 
† eXtreme Gradient Boosting (XGB) available at: https://xgboost.readthedocs.org/en/latest/ 
‡ Keras available at: http://keras.io/#keras-theano-based-deep-learning-library 
§ SKLearn available at: http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
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V. Limitations and Future Work 

Regarding AHPLS investigated, the analysis of startle / surprise and resting state prediction are left to future 

work.  Also, an appropriate benchmark task to induce confirmation bias has yet to be designed.  Regarding features, 

the inclusion of heart rate variability (HRV) and eye tracking metrics as classifier inputs are yet to be investigated.  

HRV may be important to 

cognitive state determination, as it 

generally indicates arousal of the 

nervous system, and can contribute 

information to aid the detection of 

states of temporal stress (Nickel 

and Nachreiner, 2003).  Eye 

tracking may be useful to 

objectively assess any state-

specific nature of crew instrument 

scanning.  Finally, correlations 

between the physiological 

measures and the flight control 

inputs or subject self-report 

responses are yet to be assessed.  

Also, true real time processing is 

yet to be implemented, although 

software is in place to aid time 

series recording, synchronization 

and visualization, and to interface 

with custom classification 

algorithm scripts written in-house.   

There are many opportunities 

for future work in classification 

analysis.  First, a weighted mean 

with weights based on each 

classifier’s test performance 

should be explored to replace the 

simple averaging used to 

determine the overall state 

prediction.  Second, the 

importance of each feature to 

classifier model performance may 

be used to inform the down-

selection of sensor features 

employed in future tests or system 

prototypes (such as channels from 

multisite modalities such as EEG, 

or derived variables such as 

HRV).  Third, individualized, 

participant-dependent models may 

offer greater accuracy while 

participant-independent models 

may obviate user-specific classifier training time.  Classification accuracy should be reported for participant-

independent classifier models, allowing accuracy to be tested by predicting the state of a participant whose data 

were not used to generate the model (whose data were left out of the training data set).  This will begin to answer the 

question of how much user-specific training time (if any) is required prior to use while still achieving acceptable 

results.  However, additional participants may be needed to support participant-independent analyses.  Employing 

adaptive on-line machine learning techniques is of interest to reduce classifier training time while maintaining useful 

positive predictive power.  Regardless, participant-dependent classification also should be investigated using model 

 

Low 

Wrkld 

Predicted 

Chan  

Attn 

Predicted 

Div Att 

Succ 

Predicted 

Div Att 

Sim 

Predicted 

Recall 

Low 

Wrkld 

True 

22562 1141 2 152 0.946 

Chan 

Attn  

True 

1849 22026 195 1 0.915 

Div Att 

Succ 

True 

473 374 482 1485 0.171 

Div Att 

Sim  

True 

23 1192 430 671 0.290 

Precision 0.906 0.891 0.435 0.291 

Accuracy: 

0.862 

 

Table 2. Prediction with EEG alone, for one participant. 

 

Low 

Wrkld 

Predicted 

Chan Attn 

Predicted 

Div Att 

Succ 

Predicted 

Div Att 

Sim 

Predicted 

Recall 

Low 

Wrkld 

True 

21617 1372 867 - 0.906 

Chan 

Attn  

True 

985 22965 121 - 0.954 

Div Att 

Succ 

True 

433 1219 1170 - 0.414 

Div Att 

Sim  

True 

- - - - - 

Precision 0.938 0.899 0.542 - 

Accuracy: 

0.901 

 

Table 3. Prediction with EEG and GSR, for the same participant. 
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individualization methods to determine whether any improvement in accuracy warrants user-specific training time 

for field use.   

Some additional limitations to this initial study stem from the need for additional experimental flight scenarios 

capable of inducing AHPLS.  Ground truth for cognitive state during the experimental scenarios may be enhanced 

by a systematic ground truth finding procedure based on: the subjective evaluations of flight instructors, flight 

performance measures, and strong physiological indicators (Zhang, et al., 2010).  Finally, collected data also may be 

subjected to analysis employing adaptive neuro-fuzzy inference system methods (MATLAB ANFIS editor) to 

determine whether continuous state labels can be assigned rather than categorical classification labels (Novak, et al., 

2012; Malkawi and Murad, 2013; Lin, et al., 2006; Moon, et al., 2002). These concerns will be addressed and 

opportunities for investigation will be undertaken as resources permit in future years, starting with higher fidelity 

motion-based flight simulation trials already planned. 

VI. Conclusion 

In conclusion, multi-modal sensing has 

improved the accuracy of AHPLS detection.  The 

results of this and future work will be useful for 

determining the value of simultaneous multi-

modal psychophysiological measures, and the 

value each sensor brings to classifier accuracy.  

Sensors may then be chosen by weighing their 

value against the cost of using them in 

operational training contexts.  Costs include pilot 

acceptance, obtrusiveness, comfort and privacy 

considerations, time spent training the classifier 

or applying sensors, and potential distraction 

from primary tasking – that of safe flight, real or 

simulated.  However, such costs may not be 

appropriately weighed against the value of 

psychophysiological sensing until that value is 

adequately assessed and understood.  The 

resulting state information can be fed to 

automated intelligence in the cockpit that can aid 

or alert the pilot to improve their performance or 

assist in the avoidance of errors.  This work 

begins to determine the projected efficacy of 

such a crew state monitoring system and its 

potential future impact on the avoidance, detection, mitigation, and recovery from safety-critical human crew error. 

In the broader context of improved monitoring of an increasingly complex airspace, an extension of these 

methods can be made to include aviation system-wide events and the detection of accident-relevant precursors in 

ground, air (crewed and uncrewed) and control arenas.  In combination with pilot state, this information may be used 

to detect a developing error chain before it results in an incident. Events patterns, known because they have been 

previously associated with incidents and accidents, may be monitored in real time to enable timely action for the 

purposes of aviation safety.  
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