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Abstract 

Two advanced composite tow-steered shells, one with tow overlaps and another without 
overlaps, were previously designed, fabricated and tested in end compression, both without 
cutouts, and with small and large cutouts.  In each case, good agreement was observed between 
experimental buckling loads and supporting linear bifurcation buckling analyses.  However, 
previous buckling tests and analyses have shown historically poor correlation, perhaps due to 
the presence of geometric imperfections that serve as failure initiators.  For the tow-steered 
shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to 
imperfections, leading to the agreement noted between tests and analyses.  To investigate this 
further, a numerical investigation was performed in this study using geometric imperfections 
measured from both shells.  Finite element models of both shells were analyzed first without, 
and then, with measured imperfections that were then, superposed in different orientations 
around the shell longitudinal axis.  Small variations in both the axial prebuckling stiffness and 
global buckling load were observed for the range of imperfections studied here, which suggests 
that the tow steering, and resulting circumferentially varying axial stiffness, may result in the 
test-analysis correlation observed for these shells.  
  

I.  Introduction 
 TRUCTURAL tailoring of the strength and stiffness of conventional composite laminates is typically 
       achieved by laminating integer numbers of unidirectional plies that are oriented at a limited subset 
(typically 0, ±45, and 90 degrees) of the potential fiber orientation angles.  Tow steering is another 
method for tailoring composite structures that is enabled by the inherent capability of automated fiber 
placement systems, now commonplace throughout the aerospace industry, to laminate unidirectional 
ribbons of composite prepreg material precisely and repeatedly along predefined curvilinear spatial paths.  
Such tow-steered laminates are designated as advanced composite configurations to better distinguish 
them from more conventional straight-fiber designs.  However, tow steering has not yet seen widespread 
application to flight vehicle structures, in part because of the difficulty involved in certification by the 
various regulatory authorities of aerostructures with more unconventional laminates.   
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To gain additional insight into the behavior of these highly optimized structures, two tow-steered 
shells were designed1 with circumferentially varying axial stiffnesses, and then built2 using an automated 
fiber placement system.  Both shells were tested under end compression loads, initially without cutouts,3 
and later with small4 and then large5 cutouts using the same hardware.  The prebuckling stiffnesses and 
global buckling loads were measured for each different shell configuration to provide quantitative 
measures of their structural performance.   

To compensate for the lack of agreement between analytical predictions and test data during 
structural design, a shell buckling knockdown factor of 0.65 has been widely applied as a design guideline 
since the late 1960s.6  However, this approach has also led to excessive conservatism, with a detrimental 
impact on structural and launch vehicle performance.  Despite the history of poor correlation of measured 
and predicted linear bifurcation buckling loads for compression-loaded shells,7,8 the linear bifurcation 
buckling analyses performed for the tow-steered shells described previously yielded results which 
correlated well with the associated test data.3-5  

In the present study, the impact of a wide range of geometric imperfections on the structural 
performance of the two tow-steered shells is assessed using linear finite element analyses.  Finite element 
models of the tow-steered shells are developed and analyzed both without and with measured 
imperfections.  The prebuckling axial stiffness and global bifurcation buckling load are used as shell 
performance metrics.  The initial analyses performed without geometric imperfections provide baseline 
values for comparing the results later computed with imperfections.  Both symmetric and asymmetric 
measured imperfection data2 are mapped onto the tow-steered shell structural models, and their structural 
responses are computed as these imperfections are rotated incrementally around the shell longitudinal axis.  
These analyses are then repeated for the tow-steered shells with small and large cutouts to assess the  
effect of the cutout on the structural performance in the presence of imperfections. 
 

II.  Tow-steered shells description 
The shells in this study were built using an automated fiber placement system on a cylindrical 

mandrel with a nominal outer diameter of 16.266 inches.2  The average inner diameter of the shells after 
autoclave curing was 16.290 inches, with small deviations (i.e., geometric imperfections) from a right 
circular cylinder measured on their inner surfaces.  The shells then, were trimmed to a nominal length of 
35 inches in preparation for structural testing.  In addition, 1 inch of each end of the shells was encased in 
an epoxy potting compound to prevent local brooming failure.  These potted shell ends were then 
machined flat and parallel to promote uniform load introduction during compression testing.  A sketch of 
the shell geometry is shown in Figure 1. 

 

 
Figure 1.  Tow-steered shell configuration. 
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Both shells were built with the same nominal 8-ply symmetric [±45/±Θ]s layup.  The tow-steered 
fiber orientation angles Θ varied continuously from ±10 degrees on the crown and keel, to ±45 degrees on 
the shell sides.  Representative paths followed by the fiber placement machine during fabrication were 
defined using the same constant-radius circular arc shown in blue in Figures 1 and 2.  This circular arc 
was then mirrored and shifted along the longitudinal axis of the shell, resulting in the full set of nominal 
course centerlines superposed on the shell planform in Figure 2.  As a result of this tow-steered pattern, 
these shells had two orthogonal symmetry planes, which were oriented along the vertical crown-keel 
plane and the transverse, or side-to-side, plane.  

 

 
Figure 2.  Tow-steered shell in a planform plot. 

 
Each course of 24, 1/8-inch-wide IM7/8552 graphite/epoxy prepreg tows was positioned to prevent 

overlapping of adjacent courses along the shell sides, resulting in a nominal [±45]2s layup there.  However, 
this course definition also resulted in significant tow overlaps, as shown in Figure 3, on the crown and 
keel regions1 of the shell with overlaps, designated here as Shell A.  These thickness buildups gradually 
increase from the [±45]2s layup on the shell sides, to a nominal maximum-thickness, 16-ply 
[±45/(+10)3/(–10)3]s, layup on the crown and keel, with a laminate axial stiffness (equivalent axial 
modulus x laminate thickness) that was about six times higher there than on the sides.  This shell weighed 
5.23 lbs before potting. 

The shell without overlaps, or Shell B, was fabricated using the capability of the fiber placement 
system to add and cut individual tows to produce a shell with no course-to-course tow overlaps and a 
more uniform laminate thickness,2 which weighed 4.13 lbs without the potting.  This process also resulted 
in numerous tow drops and small overlaps that were widely distributed over the shell planform.  The 
Shell B axial stiffness was approximately two times greater3 on the crown and keel than on the sides, with 
this lower ratio being due to the smaller number of axial ±10-deg. plies than on Shell A.  

For quantitative assessment of the shell structural response during testing, numerous back-to-back 
pairs of strain gages were deployed over the shell planforms for local strain measurements.  A speckle 
pattern was also applied for digital image correlation measurements of the shells as they were loaded.  
Linear variable displacement transducers were used to measure the overall axial end shortening of the 
shells, as well as lateral displacements at other selected locations. 
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After initial testing of the pristine shells without cutouts,3 small cutouts were then machined into the 
center of one side of each shell.4  Scaled to a passenger door on a commercial aircraft fuselage, these 
small cutouts were 3-inches-long axially and 4.88-inches-wide circumferentially, with corner radii of 0.50 
inches.  After retesting with the small cutouts, large cutouts (8-inches-long axially, 5.25-inches-wide 
circumferentially, and corner radii of 0.75 inches) were then machined to represent a scaled cargo 
compartment door, and these shells were subjected to a final round of testing.5  These small and large 
cutouts are denoted in Figure 2 with long and short dashed outlines, respectively.  A summary of the test 
results for these shells without and with cutouts is given in Table 1.  Visual and thermographic 
inspections, performed after each round of tests, established that the shells were undamaged during testing. 

 

 
Figure 3.  Shell A predicted laminate thicknesses.  

 
Table 1.  Measured structural performance of tow-steered shells. 

Pristine Shells without Cutouts 

 Performance metric Shell A Shell B 
 Prebuckling axial stiffness, klb/in. 531.2 328.7 
 Global buckling load, klbs 38.8 17.2 
 Postbuckling load, klbs 17.3 12.6 

Shells with Small Cutouts 

 Performance metric Shell A Shell B 
 Prebuckling axial stiffness, klb/in. 497.1 299.5 
 Global buckling load, klbs 31.8 15.5 
 Postbuckling load, klbs 20.3 10.5 

Shells with Large Cutouts 

 Performance metric Shell A Shell B 
 Prebuckling axial stiffness, klb/in. 488.6 295.6 
 Global buckling load, klbs 33.0 14.6 
 Postbuckling load, klbs 20.4 11.5 
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III.  Measured geometric imperfections 
After the pristine shells without cutouts were fabricated and cured, they were then surveyed using a 

coordinate measuring machine to determine their laminate thickness distributions and geometric 
imperfections.2  The collected imperfections for each shell were referenced to the average inner diameter 
of a best-fit right circular cylinder, resulting in data that vary about a zero mean value.  An overview of 
the measured geometric imperfections gathered from these physical surveys is presented and discussed in 
this section. 

 
A.  Shell A geometric imperfection 

The measured imperfection shape for Shell A is plotted in Figure 4, and is hereafter designated as 
Imperfection case A.  This symmetric as-built shape had two longitudinal symmetry planes, one oriented 
vertically along the shell crown-keel axis, and the second oriented transversely along the shell side-to-side 
axis.  As shown in the figure, the geometric imperfections were bulged radially outwards on the crown 
and keel, and inwards on the shell sides, with null contours (indicated in the figure as black dashed lines) 
located approximately every 90 degrees.  Their maximum amplitudes varied between –0.045 and +0.033 
inches, with a standard deviation of 0.021 inches.  When compared with the nominal 8-ply laminate 
thickness of 0.040 inches,9 these geometric imperfections ranged from –1.125 to +0.825 wall thicknesses.   

 

 
Figure 4.  Imperfection planform plot used in Imperfection case A. 

 
B.  Shell B geometric imperfection 

The cured Shell B had more asymmetric measured imperfections, as shown in Figure 5.  This 
configuration, designated as Imperfection case B, was not completely random, but was much more 
aperiodic than the imperfections for Shell A described in the previous section.  In general, the shell radii 
were smaller on the crown and keel, and larger on its sides.  The measured geometric imperfections for 
this case varied between –0.049 inches and +0.059 inches from a zero mean, with a standard deviation of 
0.019 inches.  After normalization by the same 0.040-inch laminate thickness, the imperfections were 
calculated to range from –1.225 to +1.475 wall thicknesses.   

While the minimum normalized geometric imperfections for Imperfection cases A and B were nearly 
equal, the maximum normalized imperfection for case B of +1.475 wall thicknesses was nearly two times 
greater than the +0.825 wall thicknesses of case A.  The standard deviations for these shell imperfections 
ranged from 0.525 wall thicknesses for case A, to 0.475 wall thicknesses for case B.  These data reported 
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for Imperfection cases A and B were applied without modifications here, and no attempt was made to 
either normalize or scale them prior to use. 

 

 
Figure 5.  Imperfection planform plot used in Imperfection case B. 

 
IV.  Baseline analyses without imperfections 

Linear finite element models of the tow-steered shells were developed for this study using the 
NASTRAN structural analysis software.10  An overall length of 35 inches, and an average inner diameter2 
of 16.290 inches were applied to these models based on the nominal and measured geometry of the test 
articles.  The fiber orientation angles for both Shells A and B were modeled using the as-designed 
patterns shown in Figure 2, and the predicted overlaps for Shell A shown in Figure 3.  An analysis model 
with a refined mesh of elements around the cutouts, shown in Figures 6a and 6b, respectively, was also 
developed to accurately represent the cutouts and their surrounding structure. 

 

                   
  a. Pristine shell without cutouts.  b.  Small cutout detail. 

Figure 6.  Shell finite element model. 
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Measured IM7/8552 ply material properties9 and an average 0.0050-inch ply thickness were applied 
in these finite element models.  The fiber-direction stiffness, E1, was also increased slightly from its value 
measured during coupon tests to account for the reduced ply thicknesses of the shell test articles.  The 
experimental boundary conditions were simulated using fully clamped constraints on one end of the shell, 
and a set of rigid radial links used on the other end to allow introduction of the axial load.  Lateral 
displacement constraints were also enforced to simulate the lateral restraint of the potted shell ends.  

Results for the baseline shell structural analyses, performed without geometric imperfections using 
these models, are presented in Table 2.  The prebuckling axial stiffness is computed as the inverse of the 
axial end shortening resulting from application of a unit load.  The local buckling load is the first 
computed eigenvalue for the structure, isolated to local deformation around the cutout, and the global 
buckling load is the lowest computed eigenvalue that involves deformation of the shell crown, keel, or 
both.  Results from these new structural models were also compared to corresponding analyses from 
previous studies.3-5  While these results were in good agreement, the minor differences noted were 
perhaps due to how the cutouts were modeled, with glued contacts used in the previous studies. 

Global buckling mode shapes for the pristine shells without cutouts are shown in Figures 7a and 7b.  
The blue color in these figures indicates zero displacements, and red the maximum absolute amplitude, 
with the other colors indicating non-zero amplitudes.  The rigid elements at the top of the shell are 
illustrated with the white lines connecting the nodes on the perimeter to a central node where the load is 
introduced.  These deformation patterns are associated with the eigenvalues listed in Table 2, and are 
similar to analysis results previously reported3 for those shells, where the predicted buckling 
displacements are localized to the crown and keel of the shells.  However, the observed experimental 
deformations3 did not exactly match these eigenvectors, but they did correlate well with results obtained 
using geometrically nonlinear finite element analyses.9 

 
Table 2.  Predicted structural performance of baseline shells without imperfections. 

Pristine Shells without Cutouts 

 Performance metric Shell A Shell B 
 Prebuckling axial stiffness, klb/in. 503.2 306.7 
 Global buckling load, klbs 37.3 15.6 

Shells with Small Cutouts 

 Performance metric Shell A Shell B 
 Prebuckling axial stiffness, klb/in. 495.2 298.8 
 Local buckling load, klbs 19.3 10.4 
 Global buckling load, klbs 36.6 15.2 

Shells with Large Cutouts 

 Performance metric Shell A Shell B 
 Prebuckling axial stiffness, klb/in. 491.0 294.7 
 Local buckling load, klbs 14.4 8.0 
 Global buckling load, klbs 36.3 14.9 

 
V.  Analyses with geometric imperfections  

In this study, the relative variations in shell structural performance were assessed analytically over a 
wide range of geometric imperfections.  To achieve this goal, both of the measured Imperfection cases A 
and B described in this section were applied to each of the six baseline shell finite element models listed 
in Table 2, resulting in 12 different combinations of the shell structural model (with or without overlaps), 
cutout (or lack thereof) size, and geometric imperfection case.  To generate more analysis cases, each 
imperfection case was also rotated and superposed on the shell finite element models in 5-degree 
increments of Φ, the rotation angle about the shell longitudinal axis, and the linear prebuckling stiffness 
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and global buckling load computed.  The rotation angle Φ = 0 is referenced to the shell crown as shown in 
Figure 1.  Because of the crown-keel and side-to-side symmetry of the shell wall layups, a range of Φ 
from 0 to 180 degrees was used to evaluate these pristine shells without cutouts.  Since this crown-keel 
symmetry plane was no longer present for the shells with the small and large cutouts, their structural 
performance was evaluated over the full 360-degree range of Φ.  This evaluation was done for those 
shells to identify any possible interactions between the cutouts and geometric imperfections. 

   

 
a.  Shell A.                    b.  Shell B. 

Figure 7.  Buckling mode shapes for pristine shells without cutouts. 
 

A.  Pristine shells without cutouts 
The computed shell linear prebuckling axial stiffness and global buckling load at each incremental 

rotation angle Φ were divided by the corresponding shell without cutouts baseline value from Table 2, 
and the resulting normalized values are plotted and discussed here.  The normalized prebuckling 
stiffnesses for the pristine Shells A and B without cutouts are plotted in Figure 8, with the associated 
normalized buckling loads plotted in Figure 9.  Results for Shell A are indicated with solid lines, and for 
Shell B as dashed lines.  The results for Imperfection case A are shown in the figures with solid symbols, 
and those for Imperfection case B are designated using open symbols.  Different colors are also used to 
denote each combination of shell configuration and imperfection case. 

The normalized prebuckling stiffnesses plotted in Figure 8 varied in a smooth and continuous manner 
with increasing rotation angle.  The results for each of the two imperfection cases were qualitatively 
similar for both Shells A and B, with larger amplitudes noted for Shell A.  The results for Imperfection 
case A were nearly mirror-symmetric about Φ = 90 degrees, which may be due to the higher degree of 
symmetry in Imperfection case A than in Imperfection case B.  These results show that the normalized 
prebuckling stiffnesses for both shells vary by less than ±0.25 percent from the baseline results without 
imperfections, demonstrating almost negligible sensitivity to the measured imperfections. 

The corresponding normalized buckling loads for the pristine shells without cutouts are then plotted 
in Figure 9.  The qualitative and quantitative results for both shells with each imperfection case were 
nearly identical for each rotation angle, with only small variations in amplitude observed.  As noted for 
the axial stiffnesses, the curves for the shells with Imperfection case A were almost symmetric about Φ = 
90 degrees.  These results show that the normalized buckling loads vary by between +1.5 and –4 percent 
from their baseline values, and thus, exhibit relatively little sensitivity to the imperfections.   
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Figure 8.  Plots of the normalized axial stiffness for pristine shells without cutouts. 

 

 
Figure 9.  Plots of the normalized buckling load for pristine shells without cutouts. 

 
Unlike the axial stiffness results, the buckling curves in Figure 9 showed distinct changes in both 

their local slope and curvature as the rotation angle was varied, suggesting that there were also changes in 
the associated principal buckling mode shape.  The buckling mode shapes for Shell A with Imperfection 
case A were mostly unchanged with rotation angle from that shown in Figure 7a.  However, the mode 
shapes for Shell A with Imperfection case B varied substantially, with two representative eigenvectors 
shown in Figure 10.  Further assessment of the results for Shell B showed that the locations of the 
maximum radial displacements moved towards the shell ends, and away from the shell mid-length, as the 
rotation angle changed.  Examples of these alternate mode shapes are shown in Figure 11 for 
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Imperfection cases A and B.  However, in each case, the predicted buckling deformations are localized to 
the stiffer shell crown and keel, and not the softer sides. 

 

     
 a.  Symmetric. b.  Asymmetric. 

Figure 10.  Alternate buckling mode shapes for Shell A with Imperfection case B. 
 

     
a.  Imperfection case A.              b.  Imperfection case B. 

Figure 11.  Alternate buckling mode shapes for Shell B. 
 

B.  Shells with cutouts 
Using finite element analyses, the linear prebuckling axial stiffness and lowest global bifurcation 

buckling load for Shells A and B with cutouts were computed at each rotation angle increment, and then 
divided by the corresponding baseline value from Table 2.  These normalized axial stiffnesses and 
normalized buckling loads for the shells with a small cutout are plotted in Figures 12 and 13, respectively, 
using the same symbols and line types as Figure 9 for the pristine shells without cutouts.  The abscissa 
was extended from 180 to 360 degrees in these figures to assess the relative effect of the cutouts on the 
shell imperfection sensitivity. 
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Figure 12.  Plots of the normalized axial stiffness for shells with small cutouts.  

 

 
Figure 13.  Plots of the normalized buckling load for shells with small cutouts. 

 
The normalized axial stiffnesses and buckling loads for Shells A and B with a large cutout were also 

computed and evaluated as part of this study.  However, when overlaid on the corresponding figures for 
the shells with a small cutout, those results for shells with a large cutout were very nearly 
indistinguishable from the results plotted in Figures 12 and 13, and so were not presented separately here 
to avoid repetition.  Therefore, the following results and discussion for the shells with a small cutout are 
considered to apply equally to the shells with a large cutout. 
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In general, the normalized shell axial stiffness data plotted in Figure 12 varied in a periodic manner 
with rotation angle.  However, the results for Shell A with Imperfection case A exhibited multiple local 
discontinuities in both slope and curvature as the rotation angle was varied.  Shell B with Imperfection 
case A also showed smaller variations near Φ = 180 and 360 degrees.  Higher normalized amplitudes 
were also observed for Shell A with Imperfection case B than the other configurations.  The results 
plotted between Φ = 0 and 180 degrees were identical to the corresponding data plotted between Φ = 180 
and 360 degrees, indicating that the relative location of the cutout and the imperfections did not have a 
significant effect on the structural response of the shell to the applied axial load.  In addition, the data in 
the figure were all bounded by approximately ±0.2 percent deviation from the baseline cases without 
geometric imperfections, and therefore showed negligible sensitivity to the presence of the imperfections.   

The normalized buckling loads plotted in Figure 13 for the shells with small cutouts varied in a 
sinusoidal manner over the full range of rotation angles.  Shell B with Imperfection case A exhibited 
small local discontinuities in both slope and curvature near Φ = 0 and 180 degrees.  Higher normalized 
amplitudes were also observed for the shells with Imperfection case A.  As for the axial stiffnesses in the 
preceding paragraph, the normalized data plotted for rotation angles from 0 to 180 degrees were also 
identical to the corresponding results between 180 and 360 degrees, again indicating that the computed 
buckling loads were unaffected by the relative locations of the cutout and the imperfections.  Examining 
the data in the figure, the plotted normalized buckling loads were bounded by +1.5 to –4 percent from the 
baseline results without imperfections, and exhibited some sensitivity to the presence of the imperfections.   

 
VI.  Normalized results without and with cutouts 

To further assess the impact of the cutouts on the normalized axial stiffnesses and buckling loads, the 
computed results for Shell A, both without and with cutouts, are plotted and compared in Figures 14 and 
15, respectively.  Corresponding results for Shell B without and with cutouts are plotted in Figures 16 and 
17, respectively.  Data for the cases without cutouts are denoted with solid lines, and the two cases with 
cutouts with dashed lines of different lengths.  The results for Imperfection cases A and B are designated 
with filled and open circles, respectively.  A rotation angle range of 0 to 180 degrees was used here to 
allow use of the data previously generated for the pristine shells without cutouts.  

 

 
Figure 14.  Plots of the normalized axial stiffness for Shell A. 
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Figure 15.  Plots of the normalized buckling load for Shell A. 

 

 
Figure 16.  Plots of the normalized axial stiffness for Shell B. 

 
The data plotted for Shell A in Figure 14 showed that introduction of the cutout resulted in a 

relatively minor redistribution of the normalized axial stiffnesses, while the results for Shell B in Figure 
16 showed a larger stiffness redistribution for the cases with cutouts.  In both cases, the normalized 
stiffness was then almost unaffected by further increasing the cutout size.  This result was somewhat 
anticipated, given that the small and large cutouts measured 4.88 inches and 5.25 inches, respectively, 
around the shell circumference.  That small increase in cutout width, combined with the relatively low 
axial stiffness of the shell sides, would intuitively lead to a minimal change in the overall shell axial 
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stiffness.  Examination of the test data and baseline analysis results in the tables also confirms this result, 
with an average stiffness reduction of about 1.3 percent going from the small to large cutouts.   

When the normalized buckling loads for Shell A in Figure 15 were evaluated, the evaluation indicated 
that introduction of the cutout resulted in almost no change in their distribution as the rotation angle was 
varied.  In addition, the traces for the shells with the two different cutout sizes were superposed and 
nearly indistinguishable from each other.  However, the plotted data for Shell B in Figure 17 showed 
slightly greater variations in buckling load when the cutouts were included, especially near Φ = 45 and 
135 degrees.  As noted for Shell A, the normalized buckling loads for Shell B were almost completely 
unaffected by increasing the cutout size, which compares well with a 1.4 percent reduction calculated 
from the baseline data in Table 2.  The normalized buckling loads for both shells deviated between +1.5 
to –4 percent from the baseline results, indicating that the predicted buckling loads were insensitive to the 
presence of the geometric imperfections.   

 

 
Figure 17.  Plot of the normalized buckling load for Shell B. 

 
VII.  Comparison of test results and finite element analyses  

The measured prebuckling stiffnesses and global buckling loads for Shells A and B without3 and with 
cutouts4,5 listed in Table 1 are normalized by their corresponding baseline values from Table 2.  The 
resulting ratios are listed in Table 3, with calculated values greater than one indicating that the measured 
result was greater than the corresponding analytical prediction.  Values equal to one indicate that the 
measured value is equal to the analytical result, and values less than one show that the measured value is 
less than the analytical result.  The normalized prebuckling stiffnesses in Table 3 range from 1.00 to 1.07, 
with an average of 1.02 and a coefficient of variation of 3.2 percent.  This close agreement confirms that 
the linear finite element analyses without geometric imperfections are good predictors of the 
corresponding measured axial stiffnesses of these tow-steered shells. 

The normalized global buckling loads listed in Table 3 are equal to the buckling knockdown factors 
for each of the six shell configurations tested.  These knockdown factors6 are defined as a constant that is 
applied to the analytically predicted buckling load to match the corresponding measured buckling load.  
These tabulated values range from 0.87 to 1.10, with an average value of 0.99 and a coefficient of 
variation of 8.6 percent.  Note that these knockdown factors are considerably closer to one (where the 
tests and analyses are in full agreement) than the widely-used buckling knockdown factor of 0.65.  The 



 
15 

American Institute of Aeronautics and Astronautics 

agreement observed here indicates that the buckling loads from the linear finite element analyses without 
geometric imperfections are sufficient predictors of the corresponding measured values of these tow-
steered shells. 

 
Table 3.  Normalized structural performance of tow-steered shells. 

Pristine Shells without Cutouts 

 Performance metric Shell A Shell B 
 Prebuckling axial stiffness 1.06 1.07 
 Global buckling load 1.04 1.10 

Shells with Small Cutouts 

 Performance metric Shell A Shell B 
 Prebuckling axial stiffness 1.00 1.00 
 Global buckling load 0.87 1.02 

Shells with Large Cutouts 

 Performance metric Shell A Shell B 
 Prebuckling axial stiffness 1.00 1.00 
 Global buckling load 0.91 0.98 

 
VIII.  Concluding remarks 

Two advanced composite tow-steered shells were previously designed with axial stiffnesses that 
varied periodically around their circumference, built using automated fiber placement, and tested in end 
compression both without and with cutouts.  Their measured global buckling loads were observed to be in 
good agreement with the supporting predicted linear bifurcation buckling loads, which merited further 
investigation here.  In the present study, the structural performance of the tow-steered shells was assessed 
using linear finite element analyses performed both without geometric imperfections, and also using 
measured geometric imperfection data that were applied at discrete rotation angles around the shell 
longitudinal axis.   

In each case evaluated, the radial deflections of the buckling mode shapes were localized to the shell 
crown and keel regions.  The degree of test-analysis correlation observed for these tow-steered shells is 
believed to result from their circumferentially varying axial stiffnesses, with stiff crown and keel regions 
that vary continuously around to softer sides.  The rationale for this behavior is based on Hooke’s Law, 
where the force and displacement are linearly proportional.  If a stiff spring and a soft spring are fixed in 
parallel and compressed by an equal amount, then the force in the stiff spring will be higher than that in 
the soft spring.   

As buckling of the shells under displacement control is driven by structural stiffness, then overall 
buckling for these tow-steered shells occurs in the axially stiff crown and keel, and not the sides.  And 
because buckling is therefore driven to occur in specific regions of the shell, and not the structure as a 
whole, then the geometric imperfections of the shell may not serve as triggers for the overall global 
buckling response, as is often the case for isotropic shells.	  

Therefore, the results presented and discussed here suggest that the circumferential variations in axial 
stiffness may be responsible for suppressing the global sensitivity to geometric imperfections of these 
tow-steered shells, and may be responsible for the good agreement between tests and analyses noted 
previously.  However, application of different geometric imperfection shapes other than the ones 
evaluated here may yield different results than those presented.   

The insensitivity of the normalized axial stiffnesses and global buckling loads of the two tow-steered 
shells presented here demonstrates that tow-steered composites may offer great potential for reducing the 
detrimental impact of geometric imperfections on structural performance.  Results from this investigation 
into the effects of how steered composite fibers may reduce the impact of such imperfections may be used 
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to help to better inform the future design, analysis and manufacture of future advanced composite 
structures that have lighter weight and higher performance than conventional designs. 
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