Status of the Signals of Opportunity Airborne Demonstrator (SoOp-AD)

Purdue University

Simulation, Retrieval Algorithms, Requirements Def. PI: Jim Garrison (Assoc. Prof) Yao-Cheng "Zenki" Lin (PhD candidate)

NASA GSFC

Systems Engineering, RF Design, Aircraft Integration Co-I: Jeff Piepmeier (550) Co-I: Joe Knuble (555) Ken Hersey (AS&D) Cornelus Du Toit (AS&D) Co-I: Alicia Joseph (617) Manohar Deshpande (555)

Harris (Formerly Exelis, Inc)

Digital Receiver Design

George Alikakos

Co-I: Steve O'Brien

Dr. Stephen Katzberg – Consultant

Scattering Model, Signal Processing

NASA

SoOp-AD Measurement Overview

P-Band Reflectometry

We plan to measure Root Zone Soil Moisture (RZSM) through cross-correlation of direct and reflected P-Band geosynchronous communication satellite signals.

Basis of Measurement

Expected Performance

Parameter	SoOp Airborne	SoOp Spaceborne
Resolution*	100m	870m
Antenna Size	75 x 75 cm	75 x 75 cm
Sensing Depth	0-30cm	0-30cm
Sensing Precision**	0.04m ³ /m ³	0.04m ³ /m ³

*Specular Reflection Assumed **SMAP Requirement

- SoOp-AD will use geostationary P-Band SATCOM systems
 - 225-420MHz allocation for government use, SoOp-AD will focus on 240-270MHz band: 18 x 25-kHz channels, 20 X 5kHz channels.
 - Continuous use by US since 1978, follow-on systems planning legacy support
 - SoOp-AD method measures correlation of direct and reflected signals - does not require demod / decode of the transmission.

- L-Band
 - L-band (SMAP) penetrates only few cm of soil
 - Saturation at L-band limits the ability to sense soil moisture through vegetation
 - RZSM from SMAP Level 4 assimilation product
- P-Band Radar
 - Difficult to find allocation in heavily utilized spectrum
 - ESA-BIOMASS cannot operate in North America or Europe due to interference with Space Object Tracking Radar
 - RFI
 - Expensive from space

SoOp-AD Project Highlights

- IIP Timeline
 - Awarded in April '14.
 - System I&T at GSFC is underway.
 - Science flights in Fall of '16.
- Instrument
 - Antennas: Patch, Dual Linear Pol, Null Steering
 - Receivers: Standard P-Band Receivers w/ internal calibration. S-Band receiver for XM Radio included
 - Digital System: FPGA based. 7TB Storage for raw and/or correlation data
 - Two aircraft racks: 12U Total
- Aircraft Campaign
 - Flying on NASA Langley B200.
 - Co-Flying with SLAP instrument (GSFC's Active / Passive L-Band).
 - Science flights over the St. Joseph's Watershed.
 ESTF June 14-16, 2016
 SoOP-AD an ESTO IIP

Signal Bands and Coverage

Incidence Angle for Geostationary Sources used by SoOp-AD.

Measured Signal Details & RFI

SoOp-AD RFI & Source Survey From 12/24/14 11:40EST to 1/3/15 16:40EST

Waterfall spectrum measured at GSFC over 11 days. Note persistence of SATCOM signals and broad-band RFI.

SoOp-AD System Architecture

Reflectometry:
$$\Gamma_2 = (\frac{|\tilde{Z}_{12}(\tau_{RD}|)}{\tilde{Z}_{11}(0) - G_1 \sigma_1^2})^2 \frac{G_1}{G_2} \frac{G_{S,D}}{G_{E,R}}$$

Spectrum from SoOp-AD

Raw Data Mode

"Auto" Example: (V_Sky, V_Sky*)

- Correlators have programmable 4 lags + 0
- 300-kHz noise detection bandwidth
- Test: 0, 1, 2 and 10 us (400 us not shown)

AWG QPSK waveform into V&H inputs

0 delay

22 us delay

Technology Development: Antennas

• Antenna radome design for B200 aircraft

Antenna System Considerations

- Direct-to-Reflect isolation is driving requirement – But not in orbit!
- Using two-element interferometer to synthesize a two-element array with null steering in postprocessing.
- Simulation: Earth View Beam
 - Co-pol (blue): LHCP
 - X-pol (red): RHCP

ESTF June 14-16, 2016

Results simulate a post-processed 190
 pattern with a null steered to +40°

Technology Development: Antenna Radome

- Radome designed and fabricated.
- Test-fit Successful.
- Awaiting test flight

- Ground Testing
- Aircraft Safety Test
- Aircraft Campaign in Fall of 2016

