
An Efficient Ray-Tracing Method for Determining
Terrain Intercepts in EDL Simulations

Jeremy Shidner
Analytical Mechanics Associates, Inc.

21 Enterprise Parkway, Suite 300
Hampton, VA 23666-6413

757-865-0000
jeremy.d.shidner@nasa.gov

Abstract—The calculation of a ray’s intercept from an arbitrary
point in space to a prescribed surface is a common task in
computer simulations. The arbitrary point often represents an
object that is moving according to the simulation, while the
prescribed surface is fixed in a defined frame. For detailed
simulations, this surface becomes complex, taking the form of
real-world objects such as mountains, craters or valleys which
require more advanced methods to accurately calculate a ray’s
intercept location. Incorporation of these complex surfaces
has commonly been implemented in graphics systems that uti-
lize highly optimized graphics processing units to analyze such
features. This paper proposes a simplified method that does
not require computationally intensive graphics solutions, but
rather an optimized ray-tracing method for an assumed terrain
dataset. This approach was developed for the Mars Science
Laboratory mission which landed on the complex terrain of
Gale Crater. First, this paper begins with a discussion of the
simulation used to implement the model and the applicability of
finding surface intercepts with respect to atmosphere modeling,
altitude determination, radar modeling, and contact forces influ-
encing vehicle dynamics. Next, the derivation and assumptions
of the intercept finding method are presented. Key assumptions
are noted making the routines specific to only certain types of
surface data sets that are equidistantly spaced in longitude and
latitude. The derivation of the method relies on ray-tracing,
requiring discussion on the formulation of the ray with respect
to the terrain datasets. Further discussion includes techniques
for ray initialization in order to optimize the intercept search.
Then, the model implementation for various new applications
in the simulation are demonstrated. Finally, a validation of
the accuracy is presented along with the corresponding data
sets used in the validation. A performance summary of the
method will be shown using the analysis from the Mars Science
Laboratory’s terminal descent sensing model. Alternate uses
will also be shown for determining horizon maps and orbiter
set times.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. POST2 DESCRIPTION . 1
3. FORMULATION . 2
4. IMPLEMENTATION . 5
5. VALIDATION . 7
6. DATA PRODUCTS . 7
7. CONCLUSION . 8
ACKNOWLEDGMENTS . 9
REFERENCES . 9
BIOGRAPHY . 9

978-1-4673-7676-1/16/$31.00 c©2016 IEEE
U.S. Government work not protected by U.S. copyright

1. INTRODUCTION
The calculation of range from an arbitrary point to a surface is
a common task in computer simulations. For simple surfaces,
such as spheres, the intercept point is easily calculated from
geometric relationships between point and sphere. Such
geometric relationships are used by computer simulations to
inform models (atmosphere, radar, etc...) of the shape of
the terrain. However, finding an intercept from an arbitrary
point to a surface cannot always rely on simple geometric
relationships. The intercept must be determined by searching
the arbitrary surface. For the case presented, the intersection
point is assumed to be on a Digital Elevation Model (DEM),
that defines a planetary surface for use in a computer trajec-
tory simulation. Under this assumption, the search to find the
intercept must therefore adhere to the following rules:

1. The intercept must be bounded by the closest data points.
2. The surface normal is greater than 90 degrees opposite to
the pointing vector.

The ray-tracing method presented in this paper has been
implemented and validated using the Program to Optimize
Simulated Trajectories II (POST2 [1]). The various surfaces
used come from NASA missions designed to map the surface
of various planets including Venus [[2]], Mars [[3]], Earth
[[4]], and the Moon [[5]] (Figure 1).

2. POST2 DESCRIPTION
The POST2 simulation is a generalized point mass simu-
lation that allows definition of multiple phases, using dis-
crete events, for trajectory analysis. For Entry, Descent and
Landing (EDL) applications, the versatility and heritage of
POST2 is leveraged by adding routines specific to each EDL
mission such as atmosphere, aerodynamics, thrust, terrain,
planet and vehicle models to multiple vehicles in a single sim-
ulation. These models are important for understanding end-
to-end EDL performance related to such items as parachute
deploy, inflation, heatshield jettison, powered descent, and
touchdown detection. The POST2 simulation can be used
to support Monte Carlo analysis by simulating thousands of
different initial conditions with random spacecraft and envi-
ronmental perturbations, generating statistics, and evaluating
trends and performance.

The ray-tracing method discussed in this paper is an integral
piece of the POST2 terrain model. Terrain is often delivered
as a binary file that represents the surface of a planetary body
that the simulation can use to support various analyses. The
POST2 software utilizes the terrain to determine atmosphere
look-up altitude, vehicle altitude, terminal descent sensor
range, and surface definition for vehicle ground-contact in-

1

Figure 1. Surfaces Used in Ray-Tracing Intercept
Method

teraction modeling. An example of these aspects of terrain
usage is shown in Figure 2 of the Mars Science Laboratory
touchdown animation. The dials around the edge of the image
represent quantities such as vehicle altitude, radar derived
altitude, vertical speed relative to the terrain surface and
Mach number as derived from the atmosphere model and
vehicle velocity. All of these quantities are dependent on
results from the terrain model.

Figure 2. Terrain Interactions in POST2

The terrain provides varying levels of fidelity to challenge
the various models by including more variability among data
posting over shorter length scales. The POST2 terrain model
accomplishes variable terrain fidelity by allowing multiple
layers of terrain to be loaded into the simulation. Each layer
can be searched according to a hierarchy indicated by the
user. Therefore, highly detailed terrain models can be loaded
when the vehicle is near the ground while less detailed terrain

models can be utilized when the vehicle is at higher altitudes,
as shown in Figure 3, where parachute deploy is indicated by
”PD” and backshell separation is indicated by ”BS”. Prior
to parachute deploy, the simulation only needs a coarsely
defined terrain model (450 m spacing between postings),
indicated by the layer that is colored in red, yellow and
blue. After parachute deploy, the simulation requires more
definition to support radar sensor modeling (10 m spacing
between postings) and the brown colored layer is utilized.
After backshell separation, the simulation requires the highest
terrain definition (2 m spacing between postings) to support
the touchdown interaction with variable surface slopes, using
the grey colored layer.

Figure 3. Terrain Layering in POST2

All of these quantities rely on a ray-trace algorithm that can
determine the range from any point on the vehicle (center of
gravity, vehicle touchdown supports, etc...) to the arbitrary
terrain surface along a specified pointing vector. The deter-
mination of that range needs to be as efficient as possible
since the simulation utilizes terrain lookups millions of times
in a single EDL simulation and billions of times across a
typical EDL Monte Carlo simulation. The formulation of this
calculation will be discussed next.

3. FORMULATION
The ray-tracing algorithm relies on two inputs, a planet
relative position (~S) and pointing vector (~P). From these two
vectors, the cross product yields the normal to the plane along
which the ray travels:

~n = ~S × ~P (1)

The normal defines the ray-tracing plane. The traversal of this
plane is handled by moving from one triangle to the next that
are intersected by the plane. Figure 4 shows the triangles that
are intersected by the plane where the red and dashed green
triangles represent the searchable surfaces from the terrain
dataset. The search continues along the red and dashed green
triangles until an intersection of the pointing vector on the
surface is found.

The following section will describe the derivation of this
algorithm by first describing the assumed data format and

2

Figure 4. Ray-Tracing Plane

the respective conversions to a planet-fixed cartesian frame.
Second, the initialization of the ray-trace search will be
presented by discussing various methods that help to optimize
the efficiency of the search. Third, the determination of
whether or not the ray intersects the triangle of interest will
be presented. Finally, the progression of the search along the
ray-trace plane will be discussed.

Data Usage

To understand the derivation of the ray-tracing algorithm, the
data format of the surface must first be presented (Figure 5).
The DEM data sets used are typically stored in binary format
relative to an equidistant grid in planetocentric longitude (λ)
and planetodetic latitude (φ). The grid values (h) are typically
in units of meters and offset from a reference ellipsoid as
defined by the data producers in terms of the semi-major
axis (a) and semi-minor axis (b). To calculate the radius
vector from the grid values to planet centered coordinates,
the planetocentric latitude (φ′) and radius (r) of the specified
grid point are first determined by the following equations

f = b2/a2 (2)

C =
1√

cos2 φ+ f sin2 φ
(3)

x = cosφ(aC + h) (4)

z = sinφ(afC + h) (5)

r =
√
x2 + z2 (6)

φ′ = arcsin(
z

r
) (7)

Figure 5. Assumed DEM Data Format

Using the planetocentric latitude, longitude, and radius of the
grid point, the vector to a DEM data point is determined

~r =

[
cosλ cosφ′

sinλ cosφ′

sinφ′

]
(8)

From the above equations, three vectors can be determined
within the DEM grid to assemble the triangles used in the
ray-tracing search.

Initializing the Ray-Trace

Before defining the ray-tracing plane, the search method
needs to be well defined. The normal vector to the plane is
only well defined if it is not parallel to the position vector.
Therefore, the dot product of the unit normal vector and

3

position vector can not equal negative one within a tolerance
of machine precision (ε).

−1− ε < ~S · ~P < −1 + ε (9)

If the dot-product is equal to negative one, the solution can be
determined without any search necessary, since the pointing
vector will pass through the triangle of the starting point.

Once the ray-tracing plane is well defined, the ray-tracing
search needs to be initialized. There are three initialization
options that all have applicability depending on the problem
being analyzed. The first option is to use the current planeto-
centric latitude and longitude of the planet relative position ~S.
This option is useful when determining line of sight to terrain
features. The second option is to determine the intercept
of the ray on an ellipsoid that best fits the surface, using
the planetocentric latitude and longitude of the intercept.
The third option is to start the search at the last intercept
determined by the algorithm for the previous location and
pointing vector using the closest valid planetocentric latitude
and longitude on the ray-trace plane. If there is no previous
intercept for the third option to use, the algorithm reverts to
the second option. If the spacecraft is enclosed by the best-fit
ellipsoid, then the algorithm reverts to the first option.

The intercept (~I) on the best-fit ellipsoid, depicted in Figure 6
and described using equations 10-13, is determined from the
position vector (~S), pointing vector (~P), semi-major axis (a)
of the best-fit ellipsoid, and semi-minor axis (b) of the best-fit
ellipsoid.

Figure 6. Ellipse Intercept

A = P 2
x + P 2

y +
a2

b2
P 2

z (10)

B = 2(SxPx + SyPy +
a2

b2
SzPz) (11)

C = S2
x + S2

y +
a2

b2
S2

z − a2 (12)

~I = ~S +
−B −

√
B2 − 4AC
2A

~P (13)

The ellipse intercept function will not return an intercept (~I) if
either of two conditions are true. First, no intercept is returned
if the dot-product of the position vector and pointing vector
is positive. This assumes that the spacecraft is pointing away
from the surface, and therefore, there is no intercept. Note
that this may not be desirable if the spacecraft is traveling
near a pronounced surface where an intercept exists on the
side of the surface, just above the local horizontal. In this
case, the first or third starting option should be used to find
the intercept. The second condition is that if B2 ≤ 4AC, no
intercept is returned because, mathematically, there is no real
intersection with the ellipsoid.

The third option starts the search based on the last intersection
point. Care needs to be taken in selecting this starting point,
since the last intersection likely does not lie on the ray-trace
plane (a requirement for the ray-trace search). Therefore, the
starting point on the ray-trace plane is the point that is the
least distance from the last intercept to the ray-trace plane,
Figure 7. The equation for this distance is a function of the
longitude of the ascending node of the ray-trace plane (Ω),
inclination of the ray-trace plane (i), planetocentric latitude
of the last intercept (φ′), longitude of the last intercept (λ)
and angular distance (θ) from the x-y plane to the new starting
point on the ray-trace plane.

Figure 7. Starting Point

Ω = atan2(nz,−ny) (14)

i = arccosnz (15)

tan θ =
sin i sinφ′ + cosφ′ cos i sin(λ− Ω)

cosφ′ cos(λ− Ω)
(16)

sinφ′
new = (sin θ sin i) (17)

tanλnew =
(sin Ω cos θ + cos Ω sin θ cos i

cos Ω cos θ − sin Ω sin θ cos i

)
(18)

4

The resulting planetocentric latitude and longitude can be
used as the starting point to start the ray-trace.

Triangle Intersection Test

The triangle intersection test is used at each point in the
search to test for convergence of the ray on a surface. The
intersection test is taken from [6] and illustrated in Figure 8.

Figure 8. Ray-Triangle Geometry

The intersection test starts by calculating the two vectors ~u
and ~v from the three ground point vectors ~V0, ~V1, and ~V2.
The surface normal to the triangle plane, ~q is determined from
the cross product of ~u and ~v. Note that if the dot product of
the surface normal and ray is zero, the ray is parallel to the
triangle plane. The intercept on the plane of the triangle is
calculated.

~I = ~S +
~q · ~w
~q · ~P

~P (19)

The parametric coordinates, s and t, of the intercept are then
computed. If the values of s and t are both greater than or
equal to 0, and their sum is less than or equal to 1, then the
intersection is contained by the triangle.

s =
(~u · ~v)(~w · ~v)− (~v · ~v)(~w · ~u)

(~u · ~v)2 − (~u · ~u)(~v · ~v)
(20)

t =
(~u · ~v)(~w · ~u)− (~u · ~u)(~w · ~v)

(~u · ~v)2 − (~u · ~u)(~v · ~v)
(21)

Intersection =
{
True if s ≥ 0 and t ≥ 0 and s+ t ≤ 1
False if s < 0 or t < 0 or s+ t > 1

(22)

Following the Ray-Trace Path

The search for an intersect is performed by evaluating first if
the current triangle at the starting planetocentric latitude and
longitude contains the intersection point. If not, the search
first evaluates the dot product of the three triangle points

with the ray-trace plane normal vector. If the dot product
is positive, the triangle point is on one side of the ray-trace
plane, while if the dot product is negative, the triangle point
is on the opposite side. The dot product results of the three
triangle points with the ray-trace plane normal vector are used
to logically inform the progression of the ray-trace search.
When no intersection is found, the search is appropriately
incremented such that the next increment in the three triangle
points bound the ray-trace plane.

4. IMPLEMENTATION
The ray-tracing algorithm has been coded in the C program-
ming language. Special care has been given to creating a
common data structure that can be replicated for multiple
terrain layers. Each grid can be correlated to one another
in relation to values such as height, roughness, reflectivity,
absorption, etc. These data structures are independent of each
other in the simulation so that varying levels of fidelity can be
loaded per structure. This design, combined with the speed of
C, provides an easily portable implementation for use across
a variety of simulation models.

The gridded data products are typically given in a planet rela-
tive frame as defined by the International Astronomical Union
([7]). The IAU fits the planet motion to a set of coefficients
that describe planet pole rotation, precession, and nutation.
To date, POST2 only allows definition of polar rotation,
so latitudinal effects are not accurately captured in the grid
heights relative to the simulated state. However, the effects of
precession and nutation are almost negligible on short time
scales (analyses that are not long duration orbital missions).
Therefore, comparison of the POST2 planet relative frame
and the grid’s reference frame is acceptable for use on the
scales of short simulation run times.

The inputs expected by the algorithm are planet relative
position and pointing vector. With respect to the intersection
point, the outputs are range, planet relative position, and
surface normal. Intersection options are available so that
the intersection is on one of two possible triangular planes
given the four points of a gridded dataset that bound the
intersection.

In order to optimize the calls to the ray-tracing algorithm,
the data structures are made available to other routines so
that the last intersect point can be loaded as an initial guess.
However, the same type of logic applies internal to the ray-
tracing algorithm such that if the algorithm is called twice in
a row with the same inputs, an internal data structure records
the first intersection so that the second is updated with the
same answer without calling the algorithm.

Run time is also reduced by using the Network Common
Data Form (NetCDF) to store and read the data. ”NetCDF
is a set of software libraries and machine-independent data
formats that support the creation, access, and sharing of
array-oriented scientific data ([8])”. The NetCDF format
allows loading of subsets of terrain such that only relevant
data is loaded.

Data Sets

The datasets presented within this paper were provided from
the Mars Orbiter Laser Altimiter (MOLA) Mission Experi-
ment Gridded Data Records (MEGDR) at 128 degree res-
olution [3] for evaluating planet scale terrain. The USGS
Astrogeology Center provided the Gale Crater landing site

5

DEM [9]. The NetCDF format allows storage of identifying
information that is listed in tables 1 and 2 below.

Table 1. MOLA 1/128 Degree Resolution Dataset

Parameter Value
FILE Mars128degr.nc
TITLE Mars MOLA Data Set / 128 Degree

Resolution / Radius
FRAME Reference Coordinate Frame: Mars

IAU 2000
CREATION Created on Mon Oct 29 15:55:25

EDT 2007 by Jeremy Shidner
(Jeremy.D.Shidner@nasa.gov).

SOURCE Downloaded from http://pds-
geosciences.wustl.edu/geo/mgs-
m-mola-5-megdr-l3-
v1/mgsl 300x/meg128/

FORMAT shorti
RESOLUTION 1/128 deg
SCALE FACTOR 1.0
NULL VALUE 32767
REFERENCE
SEMI-MAJOR
AXIS

3396000 meters

REFERENCE
SEMI-MINOR
AXIS

3396000 meters

BEST FIT SEMI-
MAJOR AXIS

3395959.679951 meters

BEST FIT SEMI-
MINOR AXIS

3376846.911013 meters

MAXIMUM
LATITUDE

87.996094 deg

MINIMUM LAT-
ITUDE

-87.996094 deg

MAXIMUM
LONGITUDE

359.996094 deg

MINIMUM
LONGITUDE

0.003906 deg

The FRAME parameter identifies the planet-fixed reference
frame of the dataset’s reference ellipsoid. The REFERENCE
SEMI-[MAJOR,MINOR] AXIS defines the reference ellip-
soid used to define the assumed dataset format as described
in section 3. The BEST FIT SEMI-[MAJOR,MINOR] AXIS
defines the ellipsoid that most closely fits the dataset and
is used to determine a starting point in the ray-trace search
algorithm.

The [MAXIMUM,MINIMUM] [LATITUDE,LONGITUDE]
represents the bounds of the dataset that are available. The
RESOLUTION defines the angular spacing between data
postings. The NULL VALUE is used to represent dataset
values where no data is available.

The FORMAT parameter defines the variable size of the
DEM. Possible values for FORMAT include shorti (16 bit
- short int), float (32 bit), and double (64 bit). By utilizing
different FORMATs, the DEM size can be reduced at the cost
of accuracy. The SCALE FACTOR is the multiplier on the
dataset values and can be used to recover some accuracy for

Table 2. Gale Crater Dataset

Parameter Value
FILE Gale CTX HiRISE Mosaic at 2 me-

ters resolution v7.2.nc
TITLE Gale HiRISE/CTX Mosaicked Dig-

ital Elevation Model 4/4/12 Update
FRAME Mars IAU 2000
CREATION 04-Apr-2012
SOURCE Edited and Converted (Devin Kipp)

from USGS HiRISE/CTX Mosaic
(Randy Kirk and Fred Calef)

FORMAT shorti
RESOLUTION 1/29635.881752 deg
SCALE FACTOR 0.1
NULL VALUE 32767
REFERENCE
SEMI-MAJOR
AXIS

3393000 meters

REFERENCE
SEMI-MINOR
AXIS

3393000 meters

BEST FIT SEMI-
MAJOR AXIS

3386018.031334 meters

BEST FIT SEMI-
MINOR AXIS

4952639.365362 meters

MAXIMUM
LATITUDE

-4.248966 deg

MINIMUM LAT-
ITUDE

-4.925477 deg

MAXIMUM
LONGITUDE

137.729815 deg

MINIMUM
LONGITUDE

137.122477 deg

FORMATs such as shorti.

Optimization

As described in the formulation section, the initialization of
the ray-trace search is important in optimizing the algorithm
efficiency. A series of tests were run to determine the number
of search iterations the algorithm performed across a single
EDL run of the Mars Science Laboratory POST2 simulation.
The simulation started from cruise stage separation and ended
at the completion of the fly-away maneuver of the descent
stage. The simulation takes about 5.5 minutes to run for a
970 second trajectory. The tests varied by:

1. Beginning the ray-trace search at the origin ~S.
2. Begin the ray-trace search at the intersection ~I on the best-
fit ellipsoid.
3. Begin the ray-trace search at the last intersection ~I to
occur.

The tests were run on an Intel(R) Core(TM) i7-3720QM CPU
@ 2.60 GHz with 8 GB of RAM. The results of the test
for the test cases listed above are shown in Table 3 with
the total runtime shown in column 2. Note that these are
single runs and do not represent an average of the expected
performance. The number of times the ray-trace algorithm

6

was called is shown in column 3. The GNU gprof utility
program was utilized to statistically determine the percent
runtime consumed by the ray-trace algorithm with respect to
other models executed in POST2 as shown in column 4.

Table 3. Algorithm Performance in POST2

Test Case Runtime Iterations % of Run
1. Origin 1598 sec 265e6 70.86 %
2. Best Fit Intercept 593 sec 86.1e6 36.21 %
3. Last Intercept 333 sec 17.2e6 6.62 %

The results show that without the optimization of the routine,
the simulation would be spending over 70% of its runtime
in just the terrain model alone. When running Monte Carlo
simulations, this type of inefficiency is amplified by the larger
number of cases to run, making the model unsustainable
for large-scale analysis. Overall, the optimizations of the
ray-trace starting location is shown to have a dramatic im-
provement on the runtime, and number of ray-trace search
iterations required.

A second test was run by turning off the feature that retains
the last terrain request. This feature reduces redundancy by
not evaluating the same inputs twice. By turning this feature
off, the efficiency of programs calling the terrain model in
POST2 (atmosphere, vehicle altitude, radar, etc...) can be
determined. The results are shown in Table 4.

Table 4. Terrain Redundancy Performance in POST2

Test Case Runtime Iterations % of Run
1. Origin 1614 sec 276e6 70.64 %
2. Best Fit Intercept 595 sec 97.4e6 37.40 %
3. Last Intercept 346 sec 28.6e6 7.92 %

The results show a small increase in runtime, but for the
fastest case, using the last intercept as the starting point, the
number of search iterations increased nearly 66% from 17.2
million to 28.6 million. This shows that many models in
the POST2 simulation make redundant calls while executing.
Including the feature that retains the answer from the last call
is beneficial in terms of reducing the number of iterations the
algorithm must execute.

5. VALIDATION
The presented algorithm and datasets were utilized in con-
junction with the Mars Science Laboratory EDL flight data to
verify correct operation and validation of the methodology.
The radar slant range measurements were taken from the
flight software telemetry, provided by Brian Schratz at JPL.
The Gale crater terrain datasets were provided by Devin Kipp
at JPL, Randy Kirk at USGS and Fred Calef from USGS.
The terrain datasets are produced from orbiter stereographic
images of the landing site with no map-tie rectification pro-
vided from ground assets at the MSL landing site. For slant
ranges that exceed the Gale crater terrain dataset, the MOLA
dataset is used. The reconstructed position and orientation
was provided by Fred Serrichio at JPL. The reconstructed
position gives the Descent Stage IMU location in the J2000
coordinate frame. The position and orientation were first
rotated to the IAU Mars relative frame. The position then had

to be modified by adding the respective TDS beam locations
relative to the IMU location. The beam locations and look
directions were the pre-launch estimates with no calibration
performed. The modified beam positions and look directions
were then evaluated using the ray-tracing algorithm to deter-
mine the slant range to the terrain. The reconstructed slant
range is shown in Figure 9, where the solid lines represent
the ray-trace slant range solution while the circles represent
the TDS range measurements of the individual 6 beams. The
data is reported after heatshield separation which is where the
TDS system becomes active.

Figure 9. MSL TDS Range Measurements

The flight data shows that the radar returned valid data up to
approximately 10 km slant ranges. The limit of 10 km slant
ranges was expected from the physics based radar models that
MSL used to determine performance, but can not be predicted
by the purely geometric ray-tracing model. The rogue data
point at approximately 30 seconds after heatshield separation
is the TDS locking up on the heatshield. The trends are well
captured by the ray-trace algorithm as indicated by the solid
lines following the flight data circles well. The error in the
ray-trace slant range measurements from the TDS slant range
measurements are shown in Figure 10.

The errors are shown to jump at approximately 20 seconds
after heatshield separation which is where the NAV filter
incorporates the TDS measurements and updates the state.
From that point forward, the errors are roughly zero mean
with larger values seen during regions of high dynamic mo-
tion (parachute wrist mode, powered descent). The errors
eventually converge towards zero near touchdown which oc-
curred approximately 150 seconds after heatshield separation.

The good agreement in flight data verses the ray-trace slant
range estimates helps to validate the terrain algorithms used
in the POST2 simulation.

6. DATA PRODUCTS
Alternate uses of the terrain model have been shown to be
useful in real world situations. One such application used on
the Mars Science Laboratory operations was the generation
of horizon masks. Horizon masks define line of sight viewing
capability from a given surface location. Once the Curiosity

7

Figure 10. Error in Range Measurement Estimates

rover was safely on the ground, the horizon is not flat due
to terrain features such as Mount Sharpe in Gale Crater.
Orbiter relay communications would potentially be blocked
depending on the occultation of the orbiter by terrain. For
mission planning purposes, the rover operations team would
require horizon masks to properly plan for communication
relays. Such horizon masks are easily computed using the
ray-tracing algorithm and datasets presented.

To do so, first the location of the rover UHF antenna needs to
be known in the planet-relative frame. A sweep is then made
in azimuth about the rover antenna. Along each azimuth, the
ray-tracing algorithm, with the origin as the starting point,
search for terrain along the pointing vector created by a
descending elevation until a terrain intersect is found. The
result is a dataset of azimuth verses elevation that can be
utilized by rover operators in planning relay communications
between orbiters and the rover. The paths of Mars Odyssey
and the Mars Reconnaissance Orbiter are shown in Figure
11 to highlight the impact of the horizon mask on orbiter
occultation.

Figure 11. Curiosity Landing Location Horizon Mask

Another use identified during MSL operations is the deter-
mination of landing location by using the signal-lost time
from the orbiter. In this case, the Mars Odyssey orbiter was
relaying MSL’s real time data transmissions during EDL on
August 5, 2012 using a bent-pipe transmission. The orbiter
lost the signal as it set behind Mount Sharpe at 05:37:41
UTC. As seen in the horizon mask image, the planet-relative
location corresponds to a specific time that the estimated
trajectory of Mars Odyssey would set behind Mount Sharpe.
The inverse problem can then be analyzed where the vehicle
location is not known, but the orbiter planet-relative location
is known.

The landing location determination is done by sweeping
through the expected longitude and latitudes of the landing
footprint, and determining what time the orbiter would set
behind the terrain of interest. By knowing the actual loss of
signal time, the data can then be interpolated relative to the
various computed set times to determine a line of possible
locations the vehicle could be at loss of signal. An example of
this is shown in Figure 12 where the MSL onboard estimates
are shown in detail as described in Davis, et al [10], in
addition to the cyan line where the vehicle is estimated to
be due to the loss of signal time from Mars Odyssey.

Figure 12. Curiosity Landing Location Estimate Using
Orbiter Set Time

The results show that the estimate is within 1 kilometer of
the actual landing location. This method could be useful in
cases where onboard state estimated telemetry is lost from the
vehicle, but contact is maintained up until signal loss. Using
this method would help orbital assets to know where to look
to locate the ground asset.

7. CONCLUSION
A simplified ray-tracing algorithm has been presented with
focus on determining range to terrain intercepts. The method
has been shown to operate efficiently in the POST2 simula-
tion, only consuming 7% of the total runtime for the Mars
Science Laboratory EDL simulation. The model used terrain

8

datasets from the MSL Gale Crater landing site and MSL
EDL flight data to verify its operation and interpretation of
the datasets in computing slant range estimates for a radar
system. Various uses of the model were presented for deter-
mining horizon masks and vehicle location due to orbiter set
times. The model is currently being used on the Mars InSight
mission to support terrain modeling. Future use can include
any missions that require terrain interaction modeling on such
planetary bodies as Earth, Venus and the moon.

ACKNOWLEDGMENTS
The author would like to thank NASA and the Mars Program
Office for funding this project.

REFERENCES
[1] R.W. Powell, S.A. Striepe, P.N. Desai, E.M. Queen,

G.L. Brauer, D.E. Cornick, D.W. Olson, F.M. Petersen,
R. Stevenson, M.C. Engel, S.M. Marsh. ”Program to
Optimize Simulated Trajectories: Volume II, Utiliza-
tion Manual”. Lockheed Martin Corporation, Version
1.1.6.G, May 2004.

[2] Venus Magellan: Magellan Spherical Harmonics,
Topography, and Gravity Data. http://pds-
geosciences.wustl.edu/missions/magellan/shadr topo grav/index.htm
PDS Geosciences Node. October 5 , 2007. Web.

[3] Mars Global Surveyor: MOLA MEGDRs. http://pds-
geosciences.wustl.edu/missions/mgs/megdr.html PDS
Geosciences Node. April 19 , 2007. Web.

[4] Shuttle Radar Topography Mission. http://srtm.usgs.gov/
United States Geological Survey. October 25 , 2007.
Web.

[5] Clementine Gravity and Topography Data. http://pds-
geosciences.wustl.edu/missions/clementine/gravtopo.html
PDS Geosciences Node. October 5 , 2007. Web.

[6] Sunday, Dan. http://geomalgorithms.com/a06- intersect-
2.html ”Intersections of Rays and Triangles (3D).” Ge-
ometry Algorithms. June 08 , 2007. Web.

[7] S.E. Urban and P. Kenneth Seidelmann (eds), ”Explana-
tory Supplement to the Astronomical Almanac: Third
Edition” Mill Valley [CA]: University Science Books,
2013.

[8] NetCDF. http://www.unidata.ucar.edu Network Common
Data Form (NetCDF), 2009. Web.

[9] R.L. Kirk, E. Howington-Kraus, D. Galuszka, B. Red-
ding, J. Antonsen, K. Coker, E. Foster, M. Hopkins, A.
Licht, A. Fennema, F. Calef III, S. Nuti, T.J. Parker,
and M.P. Golombek. ”Near-complete 1-m topographic
models of the MSL candidate landing sites: Site safety
and quality evaluation.” EPSC-DPS Joint Meeting 2011.

[10] J. L. Davis, J. D. Shidner, and D.W.Way, ”Mars
Science Laboratory Post-Landing Location Estimation
Using POST2 Trajectory Simulation,” AAS 13-313,
AAS/AIAA 23rd Space Flight Mechanics Meeting,
Kauai, HI, Feb. 2013.

BIOGRAPHY[

Jeremy Shidner received his B.S.
in aerospace engineering from Embry-
Riddle Aeronautical University in 2004
and M.S. degree in aerospace engineer-
ing in 2006 from the University of Mary-
land. He is currently the director of
Flight Dynamics and Control at Analyti-
cal Mechanics Associates and is a mem-
ber of the Atmospheric Flight and Entry
Systems Branch at NASA Langley. His

current activities include work on the NASA Space Launch
System, Commercial Crew Program and POST2 develop-
ment.

9

