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This paper develops techniques for predicting the uncertainty range of an
output variable given input-output data. These models are called Interval
Predictor Models (IPM) because they yield an interval valued function of
the input. This paper develops IPMs having a radial basis structure. This
structure enables the formal description of (i) the uncertainty in the models
parameters, (ii) the predicted output interval, and (iii) the probability that
a future observation would fall in such an interval. In contrast to other
metamodeling techniques, this probabilistic certificate of correctness does
not require making any assumptions on the structure of the mechanism
from which data are drawn. Optimization-based strategies for calculating
IPMs having minimal spread while containing all the data are developed.
Constraints for bounding the minimum interval spread over the continuum
of inputs, regulating the IPMs variation/oscillation, and centering its spread
about a target point, are used to prevent data overfitting. Furthermore, we
develop an approach for using expert opinion during extrapolation. This
metamodeling technique is illustrated using a radiation shielding application
for space exploration. In this application, we use IPMs to describe the error
incurred in predicting the flux of particles resulting from the interaction
between a high-energy incident beam and a target.
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MLE Maximum Likelihood Estimate
OP Optimization Program
RBF Radial Basis Function

I. Introduction

Metamodeling [19] refers to the process of creating a mathematical representation of
a phenomenon based on input-output data. These models can be parametric (e.g., poly-
nomial response surfaces, polynomial chaos expansions, bootstrapping techniques) or non-
parametric (e.g., smoothing spline models, Kriging/Gaussian Process models). In the para-
metric case, the analyst first prescribes the model’s structure and then determines the value
of its parameters such that a measure of the discrepancy between observations and predic-
tions is minimized. This step is commonly referred to as model calibration or regression.
Model-form uncertainty (i.e., uncertainty caused by the offset between the structure of the
computational model and the structure of the Data Generating Mechanism (DGM)), mea-
surement noise, and numerical error often inhibit confidently prescribing a fixed constant
value for such parameters. Consequently, it is preferable to prescribe a set of parameter
values such that the collective prediction that results from evaluating the model at each set
member accurately represents the ensemble of observations.

Several model calibration techniques are available in the literature. Most of them assume
the structure

y = M(x, p) + η, (1)

where y ∈ Rny is the output, M is a continuous function of its arguments, x ∈ Rnx is the input,
p ∈ Rnp is a parameter or regression coefficient, and η ∈ Rny is a random variation caused by
noise and measurement error. Traditionally, the realizations of the random error are assumed
to be Independent and Identically Distributed (IID) following a Normal distribution. A
typical regression problem consists of estimating the value of p given the set of observations
(xi, yi), for i = 1, . . . , N , where N > np. A key assumption in this model structure is
that measurement error is the only cause of discrepancy between the observations and the
noise-free prediction.

Parameter estimation is commonly carried out by solving for the parameter realization
that minimizes the sum of squared errors between predictions and observations [18]. This
approach yields the Least Squares (LS) parameter estimate pLS. The precision of this esti-
mate, which prescribes how much it can deviate from its “true value” within an epistemic
framework (i.e., the true value of p is fixed and unknown), is often evaluated using confi-
dence intervals. The calculation of confidence intervals [18] and prediction intervals require
a probabilistic description of p. In linear regression statistics, a prediction interval defines a
range of values within which the output is likely to fall given a specified value of the input.
The prediction error data for a linear regression are often non-normally distributed. Nor-
mally distributed data are statistically independent of one another whereas regressed data
are dependent on x. The uncertainty represented by a prediction interval includes not only
the uncertainties associated with the population mean and the new observations, but also
with the uncertainty associated with the regression parameter pLS. Because the uncertainties
associated with the population mean and new observation are independent of the observa-
tions used to fit the model, the uncertainty estimates of these three sources are combined.
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In general, the calculation of confidence and prediction intervals often requires (i) assuming
a distribution for η, (ii) the predicted y having a mathematically convenient dependency on
p and η, or (iii) a nonlinear M being accurately represented by a linear approximation. As
expected, the suitability of the resulting predictions depend tightly on the validity of such
assumptions.

A common approach to model calibration is Bayesian inference. In Bayesian inference,
the objective is to describe the model’s parameters as a vector of possibly dependent random
variables using Bayes’ rule. The resulting vector, called the posterior, depends on an assumed
prior random vector and the likelihood function, which in turn depends on the observations,
and on the structure of M . Whereas this approach does not make any limiting assumptions
on the manner in which M depends on p, nor on the structure of the resulting posterior,
it requires that the calibrated variables in p be epistemic. This vector might be comprised
of physical epistemic uncertainties and hyper-parameters of aleatory variablesa. Note that
the consideration of aleatory uncertainties requires assuming a structure for them, so they
can be parameterized in terms of non-physical epistemic variables. The presence of aleatory
and model-form uncertainty yields uncertainty characterizations that fail to describe the
prediction error (i.e., the offset between the observations and the prediction of a calibrated
model). This deficiency can be mitigated by adding a fictitious discrepancy term to M [11].
This term, which can have a fixed epistemic or a fixed aleatory structure, is calibrated as if
it were part of M . In spite of its high computational demands, and of the potentially high
sensitivity of the posterior to the assumed prior, this method is commonly regarded as a
benchmark for metamodeling.

Another approach to metamodeling is Gaussian Process (GP) Modeling [17] or Kriging.
A GP is a stochastic process in which the predicted output is prescribed by a normally
distributed random variable whose mean and variance are functions of the input. Moreover,
every finite collection of those random variables has a multivariate normal distribution. The
distribution of a GP is the joint distribution of all those (infinitely many) random variables,
and as such, it is a distribution over functions. The calculation of GPs requires prescribing
a structure for a mean and a covariance function and solving for the value of its hyper-
parameters. In spite of its high computational complexity, and its inability to accurately
describe data having an input-dependent spread, this method is widely used due to its ability
to yield broad predictions during extrapolation, e.g., predictions away from the data exhibit
a larger spreads.

This paper focuses on IPMs with a linear parameter dependency and a radial basis struc-
ture. IPMs are metamodels that cast the spread in the data as interval uncertainty in the
parameters of a computational model. Reference [6] presents the mathematical foundation
of IPMs. This structure enables the formal description of the uncertainty in the models
parameters, the predicted range of outputs, and the probability that a future observation
would fall in such a range. This paper presents optimization-based strategies for calculat-
ing an IPM and constraints for bounding its spread, regulating its variation/oscillation, and
centering its spread about a target point. Furthermore, we develop an approach for using ex-
pert opinion during extrapolation. A comparison of IPMs to other metamodeling techniques
using numerical experiments is available in the companion paper [7].

aFor instance, if q contains the physical parameters of the model M , where q1 is epistemic and q2 is
aleatory having a normal distribution with mean µ and standard deviation σ, the vector p = [q1, µ, σ]>

contains three epistemic variables, one physical and two non-physical.
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Uncertainty quantification in nuclear physics has attracted considerable attention recently
[16, 4, 12, 13]. A component of the risk due to space exploration for astronauts originates
from the natural space radiation environment. Space is filled with a high energy, low intensity
background radiation environment called Galactic Cosmic Rays (GCR). Exposure to GCR
for extended periods of time can lead to increased risk for cancer and cataracts, along with
other health problems [9]. Material shielding can potentially reduce such a risk but cannot
meet current requirements for long duration missions [8, 20]. To address the shortcomings
of physics-based models and better understand the phenomenon, NASA has funded a set
of measurements and an associated uncertainty quantification study. In this paper we use
IPMs to describe the error incurred in predicting the flux of particles resulting from the
interaction between a high-energy incident ion beam and a target.

II. Interval Predictor Models

A. Philosophy

A DGM is postulated to act on a vector of input/state variables, x ∈ Rnx , to produce an
output, y ∈ Rny . In the following, the focus will be on the single-output (ny = 1) multi-input
(nx ≥ 1) case. Assume that N input-output pairs are obtained from the DGM, and denote
by z = {zi}, with zi = (xi, yi) for i = 1, . . . , N , the corresponding data sequence.

It is desired to build a mathematical model of the DGM based on z which will predict
the output corresponding to an unobserved realization of the input. Let X ⊆ Rnx be a set
of input variables, and Y ⊆ Rny be a set of outputs which might result from evaluating
the model at elements of X. Uncertainty makes it unrealistic to build a model that will
predict a single output for a fixed input. Instead, an IPM will predict an interval into which
unobserved data is expected to fall. Engineering judgment is used to select a computational
model, y = M(x, p), where p ∈ Rnp is a parameter vector. Instead of the standard practice
of trying to fit all of the data as closely as possible with M evaluated at a single vector p
of parameters, the thrust in this work is to restrict as much as possible a set in Rnp from
which p is chosen while, at the same time, having the property that each data point can
be fit exactly by the model for at least one element of p in such a set. The restriction
considered herein forces p to belong to a hyper-rectangle P . For a fixed value of the input x,
the propagation of the set P through M yields an interval of output values y. Thus, these
models are called interval predictor models. The thrust here is to choose P to make the
corresponding y intervals as small as possible and still allow each data point (xi, yi) to be
modeled as yi = M(xi, p) for some p ∈ P .

In this setting, the two main problems of interest can be stated as follows. First, we want
to find an empirical model (or rule) that, when evaluated at a new value xN+1 of the input,
returns an informative prediction of the unobserved output yN+1. An informative prediction
can be interpreted as a narrow interval that is consistent with salient features of the data.
These features, which are cast by the analyst as design requirements on the empirical model
(e.g., we want all observed outputs to be within the predicted range), constitute the criteria
driving the search for an optimal empirical model. Second, we want to quantify rigorously
the probability that yN+1 be compliant with such requirements (e.g., the probability that
yN+1 will be inside the predicted range). In this setting, the prediction targeted is a narrow
output interval of high probability. Note that the second objective implies that the prediction
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must conform to the DGM for any value of N . This will be pursued without making any
assumptions on the underlying structure of the DGMb.

B. Mathematical Structure

An IPM is simply a function that returns an interval as output. These models were proposed
in the framework of differential inclusions and set-valued dynamical systems [1, 2], and
further developed for the case in which prior knowledge on the DGM is available [14, 15].
In the context of this paper, an IPM is a rule that assigns to each instance vector x ∈ X a
corresponding outcome interval in Y . That is, an IPM is a set-valued map

Iy : x→ Iy(x) ⊆ Y, (2)

where Iy(x) is the prediction interval. Depending on context, the term IPM will refer to
either the function Iy or its graph {(x, y) : x ∈ X, y ∈ Iy(x)} in X × Y . A parametric IPM
is obtained by associating to each x ∈ X the set of outputs y corresponding to all parameter
values p in the set P :

Iy(x, P ) = {y = M(x, p), p ∈ P}. (3)

Attention will be limited to the case in which the output is a linear combination of Radial
Basis Functions (RBF) of the input, p are the coefficients of such a combination, and the
uncertainty set P is the bounded hyper-rectanglec:

P = {p : p ≤ p ≤ p}. (4)

The parameter points p and p are called the Defining Vertices of P . Hence, the corresponding
IPM is given by

Iy(x, q, P ) = {y = p>ϕ(x; q), p ∈ P}, (5)

for ϕ(x; q) = {ϕ1(x; q1), . . . , ϕnp(x; qnp)}, where each ϕi is a non-negative-valued RBF and
qi is the part of q used by ϕi. This setting leads to

Iy(x, q, P ) =
[
y(x, q, p, p), y(x, q, p, p)

]
, (6)

where

y(x, q, p, p) = (p0 −m)>ϕ(x; q), (7)

y(x, q, p, p) = (p0 +m)>ϕ(x; q), (8)

with p0 = (p + p)/2, and m = (p− p)/2. The functions y and y are, respectively, the lower
and upper boundaries of the IPM. Each member of the family of infinitely many predictions
that results from evaluating the model M at each realization p ∈ P lies between them, and
no tighter containing functions exist. Therefore, the boundaries of Iy are linear functions of
p and p, and radial basis functions of the input. Note that the center of the interval depends

bWe will only assume that the DGM is stationary and the observations in z are Independent and Identically
Distributed (IID).

cThroughout this paper, vector inequalities hold component-wise.
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on the geometric center of the uncertainty box, p0; not on its size. The spread of Iy(x, P ),
which is the distance between the its boundaries, is

δy(x, q, p, p) = 2m>ϕ(x; q). (9)

Note that the spread depends on the semi-diagonal of P , m, and not on its geometric center
p0. Further notice that a reduction in the volume of P might yield a larger spread, and that
δy(x) exhibits the same asymptotic behavior of M(x), e.g., If Gaussian RBFs are used, the
spread converges to zero as the separation between x and the centers c increases.

The above equations fully specify an IPM given an uncertainty box P . Means to calculate
P leading to optimal IPMs are presented next.

C. IPM Formulations

In the first formulation, we seek an IPM given by (4-5) where the limits of P are given by
the solution to the following convex Optimization Program (OP).

Optimization Program 1 (OP1). The defining vertices of P̂ are given by{
p̂, p̂
}

= argmin
u,v : u≤v

{
Ex[δy(x, q, v, u)] : y(xi, q, v, u) ≤ yi ≤ y(xi, q, v, u), i = 1, . . . N

}
, (10)

where Ex[·] is the expected value operator with respect to the input x, q is a constant vector
set in advance, and (xi, yi) is an element of the data sequence z.

Hence, we search for the set P that minimizes the expected interval spread such that
all the observed outputs are in Iy(x, q, P ). When x is a random vector of analytically
known distribution, the cost function in (10) can be calculated analytically or via numerical
quadrature. Otherwise, the sample mean based on the data in z should be used. The value
of q can be prescribed using empirical arguments according to the concentration and spread
of the data. The probability that a future observation will fall in Iy(x, q, P̂ ) can be rigorously
bound using the developments of Section II.E. A natural improvement to the formulation
above results from simultaneously optimizing over the parameters q. This practice leads to
the following OP.

Optimization Program 2 (OP2). The value of q and the defining vertices of P̂ are given by{
q̂, p̂, p̂

}
= argmin

q,u,v : q∈Q, u≤v

{
Ex[δy(x, q, v, u)] : y(xi, q, v, u) ≤ yi ≤ y(xi, q, v, u), i = 1, . . . N

}
,

(11)

where Ex[·] is the expected value operator with respect to the input x, Q is the parameter set
corresponding to feasible RBFs, and (xi, yi) for i = 1, . . . , N are the observations in z.

Hence, we search for the parameter q and the set P that minimize the expected interval
spread such that all the observed outputs are in Iy(x, q, P ). As before, the probability that a

future observation will fall in Iy(x, q̂, P̂ ) can be rigorously bounded using the developments
in Section II.E.

IPMs and uncertainty sets resulting from (11) are tighter than those resulting from (10).
However, the OP in (11) is non-convex in general. This makes its computational demands
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substantially greater than those of OP1. Note however that any feasible solution to (11)
yields an IPM that encompasses all the data as required. As such, the only consequence of
(11) converging to a non-global optimum is that the resulting IPM will have a suboptimal
spread.

The developments that follow focus on Gaussian RBFs, for which

ϕ(x; qi) = e
−
(
x−ci
σi

)2

, (12)

for i = 1, . . . np, where c ∈ Rnp are the centers, σ ∈ Rnp are the length-scale parameters, and
q = [c, σ]. The same rational can be applied to RBFs with other structures.

D. Over-Fitting and Under-Bounding

Figure 1 shows an IPM having a Gaussian RBF structure based on N = 40 observations
and the OP1 formulation. The points shown as circles have the value of the centers c as the
abscissas and the midpoint of the predicted interval as the ordinates. The LS prediction is
shown as a dashed line. Note that all observations are within the IPM boundaries as intended,
but the LS prediction is not. More importantly, note that the spread of the IPM converges
to practically zero as x increases, thus, the IPM boundaries start interpolating/over-fitting
the data. This feature, which is predicted by Equations (7-8), might occur at interior points
of the input domain X. This potentially undesirable behavior can be controlled by using
the constraints proposed below. In general, such constraints lead to larger uncertainty sets
P̂ and IPMs with larger spreads. When the value of q is fixed these constraints are convex,
thus, their inclusion into an OP preserves convexity.

1. Bounding the Minimum Spread

The value of P̂ along with the corresponding value of q might lead to IPMs having inad-
missibly small spreads for some values of x in X. One correction for this is to introduce a
constraint ensuring that

δy(x, q, p, p) ≥ ε for all x ∈ X. (13)

The case in which the input is one dimensional, so nx = 1, is considered first.
To implement this idea, we want to find the minimum spread δy(x) over the range of mea-

sured inputs. This domain, to be denoted as Xm, is often prescribed by the experimentalist
before measuring data. In a one dimensional setting, we use Xm = [min(c),max(c)]. Since
δy(x) is a smooth function of x, the minimum occurs either at an endpoint of the interval or
at an interior point for which the derivate δ′y(x) is equal to zero. One easily obtains an ana-
lytic expression for δ′y(x), but the problem of solving for its zeros is analytically intractable.
Numerical techniques could be used, but their integration into the search for an IPM with a
minimum allowable spread could make the approach computationally prohibitive. Instead,
we want to find a lower bound to the spread whose minimum can be evaluated relatively
cheaply.

The strategy is to partition Xm into ni sub-intervals, and generate a lower bound to each
ϕ(x; qi) on each sub-interval by using an affine function. A lower bound to δy(x, q, p, p) is
obtained by replacing each component of ϕ(x; q) in (9) with a linear combination of such
functions. Because this combination is also affine, its minimum on the sub-interval occurs
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Figure 1. Unconstrained IPM.

at one of the endpoints. Hence, a lower bound to the minimum of δy(x, q, p, p) on Xm is the
minimum of all these sub-interval lower bounds.

We still need to specify how to partition Xm and which affine function to use as a
lower bound for each basis function on each sub-interval. We first make some observations
about the nature of the geometry of the graph of a Gaussian RBF. This curve has a unique
maximum at ci and exactly two inflection points at ci ± σi/

√
2. To the left of the left

inflection point, the curve is monotone increasing and convex. Between the inflection points,
it is concave. To the right of the right inflection point, it is monotone decreasing and convex.
On any sub-interval which falls entirely within the concave portion, the chord joining the
endpoints is a lower bound. On any sub-interval which falls entirely within one of the convex
portions, any line segment which is tangent to the curve is a lower bound. We choose to use
the tangent at the endpoint with the smaller basis function value. This ensures that the line
segment also stays above the x-axis over the sub-interval.

This suggests that we choose a partition so that none of the sub-intervals cross over any of
the inflection points. In addition, we will include all the centers in the partition. That way,
the chords drawn within the concave region will closely bound the Gaussian basis function.
Hence, we partition the interval Xm using all the points in the vector c of centers and any
of the inflection points ci± σi/

√
2 falling into Xm. Denote by xj, with j = 1, . . . , ni + 1, the

nodes of the resulting partition. Any pair of consecutive nodes in this sequence defines the
limits of a sub-interval.

Given this partition, we now need to find an affine lower bound for each Gaussian basis
function on each sub-interval. This function is completely determined by its values at the two
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sub-interval endpoints. Each node except the first and last participates in two intervals. The
values it gets from the lower bounding affine functions on the left and the right might not be
the same. Since we ultimately want a lower bound, we select the smaller of these values to
use in what now becomes a piecewise continuous linear bound l(x; qi) for ϕ(x; qi). The values
of l(x; qi) at each of the nodes depend only on qi and not on m. When we form the linear
combination of these bounds, one for each basis function, we get the piecewise linear function
2m>l(x; q), which in turn is a lower bound of δy(x, q). Numerical experiments indicate that
this is bound is tight. A lower bound for the minimum spread on the interval Xm is the
minimum value of this lower bound at any of its nodes. Consequently, the requirement in
(13) is satisfied when the ni + 1 convex constraints

2m>l(xj; q) ≥ ε, for j = 1, . . . , ni + 1, (14)

hold. This set of constraints is equivalent to the convex constraint

min
j=1,...,ni+1

2m>l(xj; q) ≥ ε, (15)

which correspond to the intersection of all ni convex sets defined by (14).
The extension of this idea to a higher dimensional input space is presented next. The

case where nx > 1 presents problems absent in the nx = 1 case. We have found a natural
way to divide the 1-dimensional domain into sub-intervals, using geometrically significant
features of the Gaussian basis functions – namely, the centers and inflection points. It is
not so obvious how to make use of geometric properties of multi-dimensional Gaussian basis
functions to generate a partitioning of a multi-dimensional hyper-rectangular domain.

For simplicity, we limit our attention to Gaussian basis functions which may have different
length scale for each dimension but have no cross-correlation terms. Viewing the multi-
dimensional hyper-rectangular domain as a Cartesian product of intervals, we partition each
interval into sub-intervals and generate a partitioning of the hyper-rectangular domain into
nr sub-hyper-rectangles by taking, in every possible combination, the Cartesian product of
a sub-interval generated by the partition of each coordinate interval. On each sub-hyper-
rectangle, each Gaussian basis function is under-estimated by its minimum value over the
sub-hyper-rectangle. This only requires knowledge of the values of the function at the vertices
of such a sub-hyper-rectangle. Using this minimum value provides a lower bound for each
Gaussian basis function on each sub-hyper-rectangle, although not one which bounds as
closely as the one-dimensional bound using line segments. If, on the fixed sub-hyper-rectangle
j, the minimum value for Gaussian basis function number i is li, then 2m>lj is a lower bound
for the spread. In this setting and analogous to (15), the requirement in (13) is satisfied
when the convex constraint

min
j=1,...,nr

2m>lj ≥ ε, (16)

holds. Hence, the requirement in (13) is cast as a single constraint regardless of how fine the
partition of Xm is. The choice of the individual coordinate partitions involves a trade-off. On
the one hand, increasingly fine partitions produce sharper lower bounds. On the other hand,
increasingly fine partitions increase nr exponentially fast, thus the amount of computational
effort required to evaluate (16).

Figure 2 shows the IPM resulting from adding the minimum spread constraints with
ε = 2.3× 10−3 to the same formulation and data set used in Figure 1. Note that the spread
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of the IPM exceeds the prescribed threshold over the entire X domain. Incidentally, the
minimum spread constraint reveals an unwanted oscillation in the prediction. Means to
regulate this oscillation are provided next.
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Figure 2. IPM with minimum spread constraints.

2. Regulating Oscillatory Behavior

The IPM at a fixed value of x is an interval that results from adding several sub-intervals,
one for each term in the linear combination. Individual sub-intervals dominating this sum
yield rapidly oscillating IPMs. This variation can be controlled by ensuring that no single
sub-interval dominates the sum at the RBF centers. This can be enforced using the linear
constraints:

(1 + γ)miϕ(ci; q
i) ≤

np∑
k=1,k 6=i

mkϕ(ci; q
k), for i = 1, . . . , np (17)

where γ is a tuning parameter set by the analyst. The satisfaction of the ith constraint
implies that the contribution of all but the ith the term to the spread at ci exceeds the
contribution of such a term by a factor proportional to γ.

Figure 3 shows the IPM resulting from adding (17) for γ = 0.4 to the same formulation
and data set used in Figure 1. Note that the oscillation has been reduced. As before, the
LS prediction is outside the IPMs at a few places. Larger values of γ yield more attenuation
of the oscillation and larger local spreads.
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Figure 3. IPM with reduced oscillation constraint.

3. Using the Least Squares Prediction

The DGM is commonly approximated by the Least Square (LS) prediction. In the context
of RBFs, this prediction is y = p>LSϕ(x; q), where pLS, the solution to

pLS(q) = argmin
p

N∑
i=1

(
yi − p>ϕ(xi; q)

)2
, (18)

is
pLS(q) = (A>A)−1A>[y1, . . . yN ]>, (19)

where Ai,j = ϕj(xi; q), for i = 1, . . . , N and j = 1, . . . , np.

The formulations for calculating IPMs above do not guarantee that pLS ∈ P̂ . Whereas
y = p>LSϕ(x; q) describes the dominant trend of the data by weighting all data points equally,
Iy(x, q, P̂ ) describes their spread. As such, there is no reason to expect that pLS ∈ P̂ nor
that y(x) ≤ p>LS(q)ϕ(x; q) ≤ y(x) for all x ∈ X. The analyst might want to relate the LS

and IPM predictions by ensuring that pLS is a member of P̂ . For instance, pLS might be
thought as the best deterministic estimate of p, and a P̂ centered at such a point can be
interpreted as the smallest set of perturbations required by the model to fit all observations.
The membership of pLS in P̂ can be ensured by replacing u ≤ v in (10-11) with

u ≤ pLS(q) ≤ v, (20)
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to be called the LS inclusion constraint, or by using

u+ v = 2pLS(q), (21)

to be called the P -centering constraint. The equality constraint ensures that the IPM pre-
diction is centered at the LS prediction, so p>LS(q)ϕ(x; q) = (y(x, q, p̂, p̂) + y(x, q, p̂, p̂)/2. In
general, the inclusion of either of these constraints leads to IPMs with larger spreads, with
the P -centering constraint leading to the larger of the two.

Figure 4 shows the IPM resulting from adding the P -centering constraint to the same
formulation and data set used in Figure 1. Note that the resulting IPM exhibits a larger
spread in most of the range X and its midpoint function coincides with the LS prediction.
Finally, Figure 5 shows the IPM resulting from using the minimum spread, the reduced
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Figure 4. IPM with P -centering constraint.

oscillation and the P -centering constraints altogether. The resulting interval prediction
exhibits the desired behavior within the data set Xm.

E. Reliability

Please refer to [6] for a detailed presentation on the reliability of IPMs. The developments
that follow are included to make this paper self-contained. Denote by P the unknown dis-
tribution of the DGM from which the data points (xi, yi) are obtained. No assumption is
made on P so that the functional form relating x and y can be arbitrary.

The reliability of the arbitrary IPM I, r(I), is defined as

r(I) = ProbP

[
(x, y) ∈ Iy

(
x, q, P̂

)]
, (22)
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where ProbP[·] is the probability operator based on P. Hence, r(I) is the probability that
the unobserved input-output pair (x, y) will fall into the predicted interval. r(I) can be
bounded using the following Theorem, based on the Scenario Approach of Campi [5] et al.

Theorem 1. Let z be a data sequence of N independent elements resulting from a stationary
DGM. Suppose the model I is calculated by solving a convex constrained OP having a unique
solution based on z. Then, for any confidence parameter β ∈ (0, 1) and any reliability
parameter ε ∈ (0, 1) which satisfy

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β, (23)

then
ProbPN [r(I) ≥ 1− ε] > 1− β. (24)

This theorem provides an assessment on unobserved data. The theorem states that
the reliability of I is no worse than 1 − ε with probability greater than 1 − β. As for the
probability 1−β, one should note that I is a random IPM that depends on N observations of
P. Therefore, its reliability can be greater or equal than 1− ε for some random observations
but not for others, and β refers to the probability PN = P × · · · × P of observing a bad
set of N samples such that the reliability of the model is less than 1 − ε. Parameter ε is
referred to as the reliability parameter while β is the confidence parameter. The confidence
probability 1−β is key for obtaining results that are guaranteed independently of the DGM.
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It is worth noting that the confidence parameter can be made very small such that it loses
any practical significance, thus r(I) ≥ 1−ε. This can be done without letting N be too large
because β vanishes exponentially fast with N . Note that assessing the reliability of the model
does not require knowing P. Equation (24) is a fundamental relation linking the amount of
information available (represented by the number of observations N), the complexity of the
model (represented by the number of decision variables d of the OP), and the probabilistic
levels of reliability ε and confidence β.

The convexity of the OP1 enables the direct application of Theorem 1 to the resulting
IPMs. This is not the case for IPMs derived using OP2 since such a formulation is non-
convex. However, the reliability of such models can be established by using the Principle of
Equivalence [6] . This principle is based on finding an auxiliary convex OP that will result
in the very same IPM found by solving the non-convex formulation. If this is attained, the
reliability of the empirical model, which is independent of the means used to calculate it,
can be rigorously evaluated via the auxiliary formulation. This approach can be applied to
IPMs derived using OP2 by noticing that OP1 with q = q̂ is the corresponding auxiliary
problem.

Note that the inclusion of the constraints above will likely increase the actual reliability
of the IPM (since the corresponding spread increases), but will not affect its analytical lower
bound 1− ε.

Using the data sequence z to derive both pLS and Iy(x, q, P̂ ) having constraint (21) vi-
olates the independence assumption of Theorem 1. The reason for this violation is linked
to the concept of support constraints and how they are used in the corresponding proof
[5]. A support constraint is defined as a constraint whose removal from the OP changes the
optimum. The rationale supporting Theorem 1 makes use of d being the largest number
of supporting constraints a convex OP admits. Removing an observation from z changes
pLS, thus, all the constraints in (10) and (11). Hence, strictly speaking, the usage of con-
straint (21) makes all such 2N constraints support constraints. This unwanted dependence
is expected to be minor for moderately large values of N as the LS parameter estimate ap-
proaches its asymptotic value and becomes practically insensitive to additional data. This
unwanted dependency is eliminated by choosing a value for pLS that is independent from the
data used to build the IPM. This, for instance, can be attained by partitioning the data set
into two subsets, using one to calculate pLS via (18), and using the other one to calculate
Iy(x, q, P̂ ) via (10) or (11). The partition of the data into subsets is a common practice in
model calibration, testing and validation.

F. Extrapolation

The developments above enable the construction of data-based metamodels. The input
domain associated with the data, denoted as Xm, is usually chosen by the experimentalist
before data is drawn from the DGM. The use of a metamodel outside Xm will be called
extrapolation. Whereas the prediction within Xm can be objectively assessed by comparing
it with the data, there is no basis to expect any data-based metamodel to properly represent
the DGM during extrapolation. Conjectures about the behavior of the DGM outside Xm are
often used to justify extrapolation, say, because of expert opinion, assumed continuity of the
moments, or the understanding of the underlying physics driving the DGM. The goodness
of such a prediction will only depend on the correctness of such assumptions. Note that
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the existence of data gaps, say, because our inability to take measurements outside Xm,
is equivalent to having a DGM based on the conditional probabilistic cloud {P|x ∈ Xm}.
Using a metamodel based on data extracted from {P|x ∈ Xm} to make predictions on a
DGM based on P over a larger input domain might lead to significant error. Naturally,
inferences and predictions based on any data-based metamodel techniques must conform to
the measured DGM to be valid. This applies to the upper reliability bound of IPMs, which
is only applicable to future observations falling within Xm.

The predicted interval corresponding to any data-based metamodeling technique should
contain as many observations as the confidence level dictates as tightly as possible. This
often implies having an interval spread that, as the data do, expands and contracts with
the value of the input. The tighter the interval the smaller the conservatism and the more
informative the prediction. On the basis of the arguments above, the prediction resulting
from a data-based metamodel during extrapolation is unreliable. To counteract for this
deficiency and to avoid the usage of unsubstantiated narrow intervals, predictions outside
Xm should be conservative. This is one of the main appeals of Gaussian Process (GP) models,
whose predicted variance grows rapidlyd with the separation from Xm. This behavior is a
safeguard against using the model beyond the intended domain of application.

A technique for modifying the behavior of a data-based IPM outside Xm is presented
next. Reasons to change the prediction during extrapolation include the desire to incorporate
expert opinion, to make the prediction satisfy physics-based considerations, and to make the
prediction more conservative. The latter modification can be used to indirectly restrict and
communicate the input-domain where the metamodel’s prediction is sufficiently accurate.

Consider the IPM given by

Iy(x) = Idata-based(x) + Ibelief-based(x), (25)

where Idata-based(x) is calculated based on one of the OPs above, and Ibelief-based(x) is a
subjective IPM built according to the following considerations: (i) Ibelief-based(x) = [0, 0]
when x ∈ Xm (so the prediction within Xm is data-driven), (ii) the spread of Ibelief-based(x)
depends on the separation between x and the set Xm (so we can account for the effects
of having to generate a prediction away from the data), (iii) the spread of Ibelief-based(x) in
the nx input dimensions is proportional to mx ∈ Rnx , where mx is set in advance by the
metamodeler (so we can account for the different units and features of individual components
of x).

Means to calculate the separation between the point x and the set Xm are provided next.
This separation will be given by the semi-diagonal of the largest hyper-rectangle with center
x and orientation mx not intersecting Xm. In what follows, we assume that Xm is a convex
sete. Convexity enables evaluating the separation between x and Xm, thus, Ibelief-based(x)

dUnfortunately, the tuning of a GP model alters the prediction inside and outside Xm in a coupled and
non-intuitive manner. Whereas the prediction within Xm converges to a process with a constant variance
(so it is unsuitable for representing DGMs having input-dependent spreads), the predicted variance during
extrapolation grows unbounded as desired. Tuning this growth however, which strongly depends on the
assumed covariance structure and the corresponding prior, is a difficult under-parameterized task coupled
to the prediction in Xm.

eWhen data gaps are present in the input domain, we can represent Xm as a group of non-intersecting
convex sets, calculate the separation to all of those sets, and chose the separation corresponding to the
smallest ‖s‖.
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efficiently. Without loss of generality, the set Xm is represented as

Xm = {x : g(x) < 0}, (26)

where g ∈ R. For instance, if Xm is a sphere of radius R centered at xc, we have g(x) =
‖xc − x‖2 − R, whereas for a hyper-rectangle with semi-diagonal m > 0 centered at xc we
have g(x) = ‖xc − x‖m∞ − 1, where ‖a‖m∞ = maxi=1,...nx ai/mi.

Denote by s ∈ Rnx the separation between x and Xm, where si > 0 is the separation
in the ith input direction, and by mx > 0 the desired rate of growth in the spread. The
separation s is given by

s(x,mx) =

{
0 if g(x) < 0,

α̂mx otherwise,
(27)

where

{α̂, x̂w} = argmin
α, xw

{α : −αmx ≤ xw − x ≤ αmx, g(xw) ≤ 0, α ≤ 0} . (28)

In this setting, a hyper-rectangle with center x 6∈ Xm and semi-diagonal s touches the
boundary of Xm at x̂w.

A model structure for Ibelief-based(x) is given by

Ibelief-based(x) = −u(s)Idata-based(x) + [v(x)− w(s), v(x) + w(s)] , (29)

where the functions u ∈ R, v ∈ R and w ∈ R are prescribed by the analyst. The function u
is a non-decreasing function of all the components of s having the range [0, µ] and satisfying
the conditions:

u(0) = 0, (30)

lim
||s||→∞

u(s) = µ ≤ 1. (31)

The function u(s) aims at canceling out the data-based IPM in (25) as the separation between
x and Xm increases, e.g., u(s) = µ− e−s>s. Note that u(s) = 0 attains the desired objective
when Idata-based(x) uses a radial basis. The function v(x) is assumed to be any continuous
function satisfying

v(x) = 0 for all x ∈ Xm. (32)

This function aims at describing the midpoint of Iy(x) as the value of s increases, e.g.,
v(x) = s>s. Finally, the function w(s) is a non-negative function satisfying the conditions:

w(0) = 0, (33)

lim
||s||→∞

w(s) = k ≥ 0, (34)

where k is the asymptotic value of the spread of Iy(x). The function w(s) describes the

spread of Iy(x) as a function of the separation s, e.g., w(s) = k − e−s>s. The IPM resulting
from substituting (29) into (25) is equal to the data-based IPM for all x in Xm, and converges
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to [v(x)− w(s), v(x) + w(s)] as the separation of x from Xm increases. In this setting, s is
an interpolating variable blending the data-based and belief-based IPMs.

Figure 6 shows a family of IPMs having the structure in (25) for the same Idata-based(x).
Idata-based(x), shown in blue, is based on the observations in z that fall within Xm = {x :
x < 0.1}. As such, the separation is given by s(x) = max{0, x − 0.1}. Note that this
IPM only contains the data in Xm. It is desired to change the IPM during extrapolation
according to two main features. For this example lets assume that physics-based arguments
require for y to converge to zero for a sufficiently large x. Furthermore, we also want to avoid
reaching this asymptotic behavior at values of x that are not large enough so the prediction
is not overly tight. Members of a family of belief-based IPMs having u(s) = 0, v(x) = 0,
and w(x) = ase−bs

2
for a, b > 0 are shown. Each member of the family corresponds to a

different {a, b} combination. The function w(x) ensures that the spread during extrapolation
grows (so the desired conservatism is attained) before decreasing towards zero (so the desired
asymptotic behavior is attained). It is up to the analyst to shape w(x), thus Ibelief-based(x) and
Iy(x), by searching for suitable values of a and b. As the figure shows, none of the resulting
IPMs contain all the data (not that the analyst would know this in practice). Whereas the
reliability upper bound for Idata-based(x) and I(x) holds for data in Xm, that is not the case
during extrapolation. To the best of the authors’ knowledge both of these extrapolation
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Figure 6. Extrapolating IPM.

features can not be attained by a GP model.

III. Application to Radiation Shielding

A component of the risk due to space exploration for astronauts originates from the natu-
ral space radiation environment. Space is filled with a high energy, low intensity background
radiation environment called Galactic Cosmic Rays (GCR). GCR consist of fully ionized
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nuclei, including all elements which are naturally occurring, traveling at near the speed of
light. Exposure to GCR for extended periods of time can lead to increased risk for cancer
and cataracts, along with other health problems [9]. Material shielding can reduce the ra-
diation risk to astronauts but cannot meet current requirements for long duration missions
[8, 20]. The number of safe days in space varies based on assumptions and models used, but
calculations suggest that the Permissible Exposure Limits will be exceeded for a Mars mis-
sion using current technology [8]. The validation of these thick radiation shielding exposure
calculations has been limited and better experimental data is needed to quantify the model
uncertainties.

To address the lack of experimental data and the need for a better understanding of model
uncertainty, NASA has funded a set of measurements and an associated project to quantify
model uncertainty using those measurements. The uncertainty in the models compared to
the laboratory experiments will be assessed and this uncertainty will then be extrapolated
to the space environment. In the laboratory, a beam of ions is delivered to the shielding
material at a given energy. The energy and its spread are well defined. The incident beam
encounters a material target and is altered through interaction with the target. Detectors
placed around the target material will measure the number, type, and energy of ions and
particles produced through the interactions. Different beam ions, beam energies, target
material types and thicknesses are the independent variables being tested. The differential
spectral flux of the detected particles will then compared to physics-based model predictions
in order to generate uncertainty estimates for this type of model.

An initial set of simulated measurement results has been created, so that the effort to
identify the uncertainty metrics could begin before the beam measurements are completed.
To simulate the experiment and model results, the FLUktuierende KAskade model (FLUKA)
[3, 10] was used. FLUKA is a fully integrated Monte Carlo simulation package for describing
the interaction and transport of particles and nuclei in matter. FLUKA has many ap-
plications in particle physics, high energy experimental physics and engineering, shielding,
detector and telescope design, cosmic ray studies, dosimetry, medical physics, radiobiology.
In the context of this study, beams of 12C, 14N, and 28Si ions at 500 MeV/n, 1000 MeV/n,
and 1500 MeV/n kinetic energies incident on a 15 cm thick aluminum target were modeled
and the differential flux of particles and ions produced were used to simulate the experimen-
tal data. For the simulated model results, beam ions with a slightly higher mass were used
to ensure there was a difference between the simulated experiment and the model predictions
while all other parameters were kept the same.

A. Example

Denote by Ei the energy of the ions of the incident beam and by Eo the energy of an ion of a
particular type leaving the target. FLUKA is used to predict the flux of output ions within
a prescribed sub-interval of energy Eo. These predictions are compared to experimental
observations over the same sub-intervals to obtain a prediction error of the flux, ∆F . IPMs
in which Eo is the input and ∆F is the output are calculated below. There is a different IPM
for each combination of incident ion/particle type and energy, target thickness and type, and
output ion/particle type. In the examples that follow we assume that the values of ∆F are
scalar quantities.

The Eo domain from which measurements are taken is partitioned using a logarithmic
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scale. As such, we will assume a probability distribution for x that makes every subinterval
in the partition equally likely. This distribution is used to calculate the cost function in
OP1 and OP2. Furthermore, we assume an expansion with np = 10 RBF terms, and use the
minimum spread-, reduced-oscillation- and P -centering-constraints. All the IPMs presented
below are data-based, so the developments in Section II.F are not used.

Figure 7 shows N = 40 data points corresponding to a carbon projectile with Ei =
1GeV/nucleon, an aluminum target, and a proton output particle. The vertical lines are the
limits of the subintervals. The OP1 formulation for a suboptimal value for q leads to IPM
A, whose boundaries are shown as black lines. As before, the LS prediction is showed as a
dashed line whereas the RBF centers are shown as circles. Note that IPM A contains all the
data and its limits pass through four data points, one at the upper limit and three at the
lower limit. The OP2 formulation leads to IPM B, which is shown in blue. The improved
tightness of IPM B relative to IPM A is apparent. This is reflected in the value of the cost,
which is Ex[δy(x; q)] = 7.007 × 10−3 for IPM A and Ex[δy(x; q̂)] = 4.855 × 10−3 for IPM B.
Note that the centers of IPM B are different from those of IPM A (used as initial condition
in the search for q̂ in (11)), and the boundaries of IPM B pass through nine data points,
five at the upper limit and four at the lower limit. The increased number of points on the
limits of the IPM is an indication of the tightening of the prediction. Since both IPMs are
based on the same number of observations, and on the same number of RBF terms, they
admit the same reliability upper bound. For N = 40, d = 10, β = 10−4, Theorem 1 leads to
ε = 0.825. Therefore, we expect future observations to fall outside the predicted range with
a probability that won’t exceed 0.825. This large value is a consequence of the small sample
size. Note that whereas the same upper bound applies to both IPMs, the actual reliability
of IPM B will likely be smaller than that of IPM A by virtue of its improved tightness. The
closed-form expressions for the IPM boundaries, along with the reliability bound, enable
rigorous uncertainty quantification for FLUKA.

Figure 8 shows IPMs corresponding to a carbon projectile for three values of Ei, an
aluminum target, and a Helium output particle. In all three cases we use the same number
of RBFs. The same line conventions used previously apply. Note the high sensitivity of the
IPM to the value of Ei throughout the Eo range. This range is not the same for all three
cases. Dashed vertical lines are used to denote the data point with largest Eo value. The
IPMs corresponding to the red and blue lines are extrapolating beyond that value. This is
highlighted by showing the IPM boundaries as dashed-dotted lines during extrapolation. As
predicted by (9), the spread of IPM having a radial basis converges to zero as the separation
between the test and the measured inputs increases. This is consistent with the nature of
the physical quantity being predicted. Bases having terms of global influence, such as a
polynomial basis, will not exhibit this behavior.

A two-dimensional IPM having the input x = {Ei, Eo} can be readily calculated by
combining the data used to construct the three one-dimensional IPMs, and using OP1 or
OP2. The reliability of the resulting IPM can be bounded using Theorem 1. Alternatively,
the three one-dimensional IPMs in Figure 8 can be combined to make predictions at other
Ei values. This can be achieved by interpolating the set P and the parameter q based on the
three points available. Any interpolation scheme that yields feasible values for these variables
is viable, i.e., if z is the interpolating variable, it is required that q(z) ∈ Q and m(z) > 0.
Figure 9 shows the resulting IPM. As expected, all observations (not shown) are within the
IPM boundaries, and sections at Ei = 0.5 GeV/n, Ei = 1GeV/n, and Ei = 1.5GeV/n, are

19 of 23

American Institute of Aeronautics and Astronautics



10
−2

10
−1

10
0

−12

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Energy Output Particle, Eo, [GeV/n]

 

 

P
re

d
ic

ti
o

n
 E

rr
o

r,
 ∆

F
, 

[p
a

rt
ic

le
s
/(

c
m

2
 G

e
V

/n
)]

Data IPM A IPM B

Figure 7. IPMs based on OP1 (black) and OP2 (blue) for 12C(1 GeV/n) + Al→ Proton

10
−2

10
−1

10
0

10
1

10
2

−2

−1

0

1

2

3

x 10
−4

Energy Output Particle, Eo, [GeV/n]

P
re

d
ic

ti
o
n
 E

rr
o
r,

 ∆
F

, 
[p

a
rt

ic
le

s
/(

c
m

2
 G

e
V

/n
)]

 

 

Ei=0.5 GeV/n Ei=1 GeV/n Ei=1.5 GeV/n

Figure 8. IPMs for x = Eo and 12C(Ei) + Al→ 3He(Eo), for three values of Ei.

20 of 23

American Institute of Aeronautics and Astronautics



equal to the IPMs in Figure 8. The reliability bound of each of the three one-dimensional

Figure 9. IPM for x = {Ei, Eo} and 12C(Ei) + Al→ 3He(Eo)

IPMs can be calculated using Theorem 1. However, that is not the case for any other value
of Ei, nor for the two-dimensional IPM resulting from interpolation.

IV. Conclusions

This paper focuses on the construction and shaping of IPMs having a Gaussian radial
basis. The local nature of this basis enables the accurate description of data generating
mechanisms having an input-dependent spread with minimal modeling effort. This advan-
tage, however, might yield predictions that overfit the data or for which the prediction is
overly narrow. This is always the case during extrapolation. Means to counteract for this
deficiency by constraining the search for an optimal IPM are developed herein. This meta-
modeling technique is illustrated using a radiation shielding application. In this application
we use IPMs to describe the error incurred in predicting the flux of particles resulting from
the interaction between a high-energy incident beam and a target.
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