

PERFORMANCE ANALYSIS OF A HARDWARE IMPLEMENTED COMPLEX SIGNAL KURTOSIS RADIO-FREQUENCY INTERFERENCE DETECTOR

Adam J. Schoenwald^{1,2} Adam.Schoenwald@nasa.gov

Dr. Damon C. Bradley¹, Dr. Priscilla N. Mohammed^{1, 3}, Dr. Jeffrey R. Piepmeier¹, Dr. Mark Wong¹

- (1) NASA Goddard Space Flight Center, Greenbelt, MD
- (2) ASRC Federal, Greenbelt, MD
- (3) Goddard Earth Sciences Technology and Research, Morgan State University

To be presented by Adam Schoenwald at the 2016 Earth Science Technology Forum (ESTF2016), Annapolis, MD, June 14-16, 2016

Acronym List

Acronym	Definition
AUC	Area Under Curve
CSK	Complex Signal Kurtosis
CW	Continuous Wave
dB	Decibel
DVB-S2	Digital Video Broadcasting - Satellite - Second Generation
FB	Full Band
Gbps	Billions of Bits per Second
INR	Interference to Noise Ratio
NASA	National Aeronautics and Space Administration
RFI	Radio Frequency Interference
ROC	Receiver Operating Characteristic
RSK	Real Signal Kurtosis
SB	Sub Band

Motivation

RFI compromises quality of science products.

Spectrum is becoming crowded and shared.

Hardware capabilities allow for digital radiometry.

Need more sensitive detectors for wide-band interference.

Real Signal Kurtosis

Given a complex baseband signal z(n) = I(n) + jQ(n), the fourth standardized moment is computed independently for both the real and imaginary vectors, I and Q, as was used in SMAP[3].

$$\operatorname{RSK}_{I} = \frac{\mathbb{E}[(I - \mathbb{E}[I])^{4}]}{(\mathbb{E}[(I - \mathbb{E}[I])])^{2}} - 3 \quad , \quad \operatorname{RSK}_{Q} = \frac{\mathbb{E}[(Q - \mathbb{E}[Q])^{4}]}{(\mathbb{E}[(Q - \mathbb{E}[Q])])^{2}} - 3$$

The test statistic, RSK (Real Signal Kurtosis), is then defined as

$$RSK = \frac{|RSK_I| + |RSK_Q|}{2}$$

Complex Signal Kurtosis

Given a complex baseband signal z(n) = I(n) + jQ(n), moments $\alpha_{\ell,m}$ of z(n) are defined as

$$\alpha_{\ell,m} = \mathbb{E}\big[(z - \mathbb{E}[z])^{\ell}(z - \mathbb{E}[z])^{*m}\big], \ell, m \in \mathbb{R} \ge 0$$

With $\sigma^2 = \alpha_{1,1}$, *Standardized moments* $\varrho_{\ell,m}$ can then be found as

$$\varrho_{\ell,m} = \frac{\alpha_{\ell,m}}{\sigma^{\ell+m}}$$

Leading to the CSK (Complex Signal Kurtosis) RFI test statistic used [1,2].

$$C_{K} = \frac{\varrho_{2;2} - 2 - \left|\varrho_{2;0}\right|^{2}}{1 + \frac{1}{2} \left|\varrho_{2;0}\right|^{2}}$$

Moment Calculation

Using the nomenclature for raw moments of the rth power, $mI^r = \mathbb{E}[I^p]$, $mQ^r = \mathbb{E}[Q^p]$, full band moments produced to compute kurtosis include

$$\{mI^r, mQ^r\}, r \in \{1, 2, 3, 4\}$$

Additionally, the following cross complex moments are generated

 $\{mIQ, mIQQ, mIIQ, mIIQQ\}$

In the case of sub-banding , all 12 moments for each polarization are produced for every sub-band.

Methodology

Simulation Results

Simulation Results

Hardware Results

Hardware Results

Conclusions

CSK (*Complex Signal Kurtosis*) provides a better detection rate than real signal kurtosis.

Interference becomes detectable at an INR (*Interference to Noise Ratio*) of 2dB lower than what can be detected using RSK (*Real Signal Kurtosis*).

The research team would like to thank the NASA Earth Science Technology Office NNH13ZDA001NACT program for funding this research.

References

- D. C. Bradley, A. J. Schoenwald, M. Wong, P. N. Mohammed and J. R. Piepmeier, "Wideband digital signal processing test-bed for radiometric RFI mitigation," Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, Milan, 2015, pp. 3489-3492.
- 2. E. Ollila, J. Eriksson and V. Koivunen, "Complex Elliptically Symmetric Random Variables—Generation, Characterization, and Circularity Tests," in *IEEE Transactions on Signal Processing*, vol. 59, no. 1, pp. 58-69, Jan. 2011.
- J. Piepmeier, J. Johnson, P. Mohammed, D. Bradley, C. Ruf, M. Aksoy, R. Garcia, D. Hudson, L. Miles, and M. Wong, "Radio-frequency interference mitigation for the soil moisture active passive microwave radiometer," IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 761–775, January 2014.