16th AIAA Aviation Technology, Integration, and Operations Conference Transformational Flight Session: SCEPTOR Distributed Electric Propulsion X-Plane

SCEPTOR Power System Design: Experimental Electric Propulsion System Design and Qualification for Crewed Flight Testing

Sean Clarke, P.E. SCEPTOR Co-Principal Investigator NASA Armstrong Flight Research Center Edwards, CA

15 May 2016

Ack: Matt Redifer, Aamod Samuel, Dionne Hernández-Lugo, Yohan Lin, Kurt Papathakis, Azzam Tabbal, ESAero, Joby, EPS AVATAN J 2016

NASA SCEPTOR X-Plane

(Scalable Convergent Electric Propulsion Technology Operations Research)

Distributed Electric Propulsion (DEP) is a new technology frontier,

enabling ultra-high efficiency, low carbon emissions, low community noise, and low operating costs.

When coupled with the autonomy technology frontier, will enable transformative high-speed On-Demand Mobility

SCEPTOR X-Plane Objectives

Primary Objective

Goal: 5x Lower Energy Use (Compared to Original P2006T @ 175 mph)

- IC Engine vs Electric Propulsion Efficiency changes from 28% to 92% (~3.3x)
- Synergistic Integration (~1.5x)

Derivative Objectives

- ~30% Lower Total Operating Cost
- Zero In-flight Carbon Emissions

Secondary Objectives

- 15 dB Lower community noise
- Flight control redundancy and robustness
- Improved ride quality
- Certification basis for DEP technologies

SCEPTOR Wing Sizing Impact

Tecnam P2006T Wing loading 17 lb/ft²

NASA DEP Wing Wing loading 45 lb/ft²

Impact

- Same Takeoff/Landing Speed
- Large Reduction in Wing Area
- Decreases the Friction Drag
- Allows Cruise at High Lift Coefficient
- Less Gust/Turbulence Sensitivity

DEP Integration Synergistic Design

SCEPTOR Project Approach

Spiral development processBuild – Fly – Learn

Traction Power System Architecture

Traction Power System Integration with Avionics

Command System Architecture

Traction Bus

- Redundant traction buses. Each high-lift motor alternates buses, cruise motors pull 50% power from each bus.
- Buses protected in separate ducts for isolation, shielding and protection
- Command and Instrumentation systems routed and shielded separately to avoid interference and common failures

E|**S**|**AERO** Xperimental, LLC

Environmental Test Standards

- NASA AFRC DCP-O-018 Environmental Acceptance Testing: Electronic & Electromechanical Equipment describes standard vibration and thermal testing approaches for equipment to be flown at AFRC.
 - Doesn't (yet!) include guidance for electric propulsion motors
- MIL-HDKB-344A, §5.4 describes Environmental Stress Screening for workmanship flaw detection.
 - Recommends lower vibration test duration than DCP-O-018 for most curves
 - Recommends more thermal test cycles depending on the ramp rate

Er El					NOT	MEASURE	MENT					
I F					MIL-HDB	<-344A						
			Table 5	.15: Pre	cipitation	M Efficien	IL-HDBK-S	344A ors - Tei	nperature	a Cycling	g Screen	8
	DURATION (MINJTES) 5	NUMBER CF CYCLES	TEMP. RATE OF CHANGE °C/MIN			T	EMPERAT	URE DEL	TA (ΔT) - ^ο (0		
	10			20	40	60	80	1 00	120	140	160	180
	20	2	5	.1632	.2349	.2886	.3324	.3697	.4022	.4312	.4572	.4809
	25	2	10	.2907	.4031	.4812	.5410	.5891	.6290	7920	.6920	./1/3
	30	2	20	.4707	.6155	.7034	.7636	.8075	.8407	.8665	.8871	.9037
	35	2	25	.5350	.6835	.7684	.8237	.8623	.8904	.9114	.9276	.9402
EN	40	2	30	.5878	.7359	.8160	.8659	.8992	.9226	.9395	.9521	.9616
	50											
	55	4	5	.2998	.4146	.4939	.5543	.6027	.6427	.6764	.7054	.7305
	•0	4	10	.4969	.6437	./308	.7893	.8312	.8624	.8863	.9051	.9201
	65	4	20	7198	8522	.8438	9441	9629	9746	.9822	9873	9907
	70	4	25	.7837	.8998	.9464	.9689	.9810	.9880	.9922	.9948	.9964
	75	4	30	.8301	.9302	.9662	.9820	.9898	.9940	.9963	.9977	.9985
	15											
	90	6	5	.4141	.5521	.6399	.7024	.7496	.7864	.8160	.8401	.8601
	95	6	10	.6431	.7873	.8603	.9033	.9306	.9489	.9617	.9708	.9774
	100	6	20	8517	.8931	9418	9857	.9788	9960	.9910	9939	.9958
	105	6	25	.8994	.9683	.9876	.9945	.9974	.9987	.9993	.9996	.9998
	115	6	30	.9299	.9816	.9938	.9976	.9990	.9995	.9998	.9999	.9999
	120											
	125	8	5	.5098	.6574	.7439	.8014	.8421	.8723	.8953	.9132	.9274
	130	8	10	.7468	.8731	.9275	.9556	.9715	.9811	.9871	.9910	.9936
	135	8	15	.8625	.9493	.97/4	.9889	.9941	.9967	.9981	.9989	.9993
	145	8	25	.9532	.9900	.9971	.9990	.99996	9999	.99999	1.0000	1.0000
	160	8	30	.9711	.9951	.9989	.9997	.9999	1.0000	1.0000	1.0000	1.0000
		10	5	.5898	.7378	.8178	.8674	.9005	.9237	.9405	.9529	.9623
ANSC N		10	10	.8204	.9242	.9624	.9796	.9883	.9930	.9956	.9972	.9982
AMSU N		10	15	.9163	.9759	.9912	.9964	.9984	.9992	.9996	.9998	.9999
DISTRIBL		10	25	9783	8906	.9977	9993	1 0000	1.0000	1.0000	1.0000	1.0000
2.0		10	30	.9881	.9987	.9998	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

SCEPTOR Environmental Test and Analysis Program

- CEPT-007 Env. Test Plan is using extrapolated random vibration and thermal test duration cycle time based on guidance from DCP-O-018 and MIL-HDKB-344A
 - Motor testing while loaded on a vibration table infeasible; instead will take credit for "FAR Part 33-Like" endurance testing on static test stand due to self-induced vibration environment
 - Thermal testing for custom components will use 10+ ESS cycles based on 344A.
- Test severity is based on ground/flight test environment and operational limits
- Shock and impulse testing/analysis based on FAR Part 23, DO-160
 - New added or modified components must meet Landing loads (with margin) and crash loads (18g ultimate)

Duration							Acc	eleration	Level (G-F	MS)						
(Minutes)	0.5	0.75	1	1.55	2	2.5	3	4.12	5	6	8	10	12.2	15	17.1	19.1
4.0					0.058	0.084	0.113	0.187	0.251	0.326	0.475	0.611	0.734	0.849	0.906	0.942
4.3					0.063	0.090	0.121	0.200	0.267	0.345	0.500	0.637	0.760	0.869	0.921	0.953
4.6					0.067	0.096	0.129	0.212	0.282	0.364	0.523	0.662	0.782	0.886	0.934	0.962
4.9				0.047	0.071	0.102	0.137	0.224	0.298	0.383	0.546	0.685	0.803	0.901	0.945	0.970
5.3				0.050	0.077	0.110	0.147	0.240	0.318	0.407	0.574	0.714	0.827	0.918	0.956	0.977
5.8				0.055	0.084	0.120	0.160	0.259	0.342	0.435	0.607	0.745	0.854	0.935	0.967	0.984
6.3				0.059	0.090	0.130	0.173	0.278	0.365	0.462	0.638	0.774	0.876	0.949	0.976	0.989
6.9				0.065	0.099	0.141	0.188	0.300	0.392	0.493	0.671	0.804	0.898	0.961	0.983	0.993
7.5				0.070	0.107	0.152	0.202	0.322	0.418	0.522	0.701	0.830	0.917	0.971	0.988	0.995
8.0				0.075	0.113	0.162	0.214	0.339	0.438	0.545	0.724	0.849	0.929	0.977	0.991	0.997
9.0				0.084	0.127	0.180	0.237	0.373	0.477	0.588	0.765	0.880	0.949	0.986	0.995	0.998
10				0.093	0.140	0.198	0.260	0.404	0.514	0.627	0.800	0.906	0.964	0.991	0.997	0.999
11			0.049	0.102	0.153	0.215	0.282	0.434	0.548	0.662	0.830	0.925	0.974	0.994	0.998	1.000
13			0.058	0.119	0.178	0.249	0.324	0.490	0.608	0.722	0.877	0.953	0.987	0.998	1.000	1.000
15			0.067	0.136	0.202	0.282	0.363	0.540	0.661	0.772	0.911	0.971	0.993	0.999	1.000	
17		0.047	0.075	0.152	0.226	0.313	0.401	0.585	0.706	0.813	0.935	0.982	0.996	1.000		
19		0.052	0.084	0.169	0.249	0.342	0.436	0.626	0.746	0.846	0.953	0.989	0.998	1.000		
22		0.060	0.096	0.193	0.282	0.384	0.484	0.680	0.795	0.885	0.971	0.994	0.999			
25		0.068	0.109	0.216	0.314	0.424	0.529	0.726	0.835	0.915	0.982	0.997	1.000			
30		0.081	0.129	0.253	0.363	0.484	0.595	0.789	0.885	0.948	0.992	0.999				
35	0.048	0.094	0.149	0.289	0.409	0.538	0.651	0.837	0.920	0.968	0.996	1.000				
42	0.057	0.111	0.176	0.336	0.469	0.604	0.718	0.886	0.952	0.984	0.999					
50	0.068	0.131	0.205	0.385	0.529	0.668	0.778	0.925	0.973	0.993	1.000					
60	0.081	0.155	0.241	0.442	0.595	0.734	0.836	0.955	0.987	0.997	1.000					
70	0.094	0.179	0.275	0.494	0.651	0.786	0.878	0.973	0.994	0.999						
90	0.119	0.224	0.339	0.584	0.742	0.862	0.933	0.991	0.998	1.000						
110	0.143	0.266	0.397	0.657	0.809	0.911	0.964	0.997	1.000							
140	0.179	0.325	0.475	0.744	0.878	0.954	0.985	0.999								
180	0.224	0.397	0.563	0.827	0.933	0.981	0.996	1.000								
230	0.276	0.476	0.653	0.893	0.969	0.994	0.999									
300	0.344	0.570	0.748	0.946	0.989	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
390	0.422	0.666	0.834	0.978	0.997	1.000										
500	0.505	0.755	0.900	0.992	0.999											
700	0.626	0.860	0.960	0.999												
1000	0.755	0.940	0.990													
1300	0.839	0.974	0.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1900	0.931	0.995	1.000													
2700	0.978	0.999														
4000	0.996	1.000														
6000	1 000															

Mod I Engine Nacelle Vibration Rental Tecnam – Rotax Engine

Mod I Motion Pack Rental Tecnam – Seat Rails

Mod I Seat Rail Vibration 3 single axis accels

SCEPTOR Cruise Motors

- Air cooled, direct drive outrunner
- Replaces 100 HP Rotax 912S engine with 60 kW Joby motor
- Expected cruise operating point between 42 and 45 kW
- Tailoring FAA engine design acceptance testing (Part 33) for NASA flight qualification
- Electrodynamics, thermal and control modeling and prototyping underway

SCEPTOR Cruise Inverters

- Qdesys Motor Control implemented on Xilinx Zynq FPGA+ARM
- FPGA based variable frequency switching (real time peak seeking controller)
- Redundant architecture: each power train contributes half of the torque
- Three SiC half bridges for power switches: Cree CAS300M12BM2
- One 500uF CAP for DC link: SBE 700D406 (Eliminates snubber CAPs)
- Isolated carrier board for I/O
- Aluminum enclosure (EMI shielding) Aerospace connectors for I/O

16

SCEPTOR Battery Module Configuration

- Electric Power Systems design
- Organized into 8 battery modules per aircraft, split into two packs, each with 4 battery modules and a control module
- Cooling analysis will drive module spacing, cells spaced at 4mm
- Nickel Cobalt Aluminum 18650 cells selected; provides sufficient energy density and discharge rate for SCEPTOR mission. Cells arranged in 20p32s modules with BEP between series halves.
- Each pack is 20p128s; 47 kWh useful capacity, 461 VDC nominal (416 to 525 across SOC range), peak discharge of 132 kW.
- Will comply with flight environment, including 18 g crash loads,
 -5 to +45 °C operating environment

Mission Planning Power Estimate

- Modeling power and energy required for various reference missions
- Based on the VSP reference design 3.3
- For the primary objective mission in Mod III, currently predicts 38 kWh required with a peak demand of 145 kW

Command System Hardware

- CAN Bus used as the common command and data handling backbone
- Command system will use COTS throttle position encoders and programmable digital display units in the cockpit
- Fiber Optic Bus Extenders will tunnel C&DH bus through fiber down the length of the wing (avoid EMI)
- Additional data collection via analog-to-CAN measurement system

Command System Hardware

- Custom Propulsion System displays developed with test pilot feedback
- Includes fault identification logic
- Identifies command bus failures
- Proof of concept HIL complete; building full scale system now
- Pilot interface, mission profile and emergency procedures will be developed in 180° flight sim

In every branch of knowledge the progress is proportional to the amount of facts on which to build, and therefore to the facility of obtaining data. - James Clerk Maxwell (1851)

Backup

NASA Aircraft Electric Propulsion Ground Testbeds

Capability	PEGS	1MW CRC	AirVolt	NEAT	HEIST
Max Power Level (kW)	3	1,000	100	24,000	250
Components Tested	Scaled Electric Grid	Cryo Motor, Drives	Powertrain performance	Flight-Weight Powertrain	Wing Integration, Flight Controls
TRL Demo	3	4	5	6	7
Aircraft Size	NA	NA	2-20 PAX	150 PAX	2-4 PAX
Cryogenic	No	500 gal LH2	No	3000 gal LH2, LN, LNG	No
Chiller	No	No	No	Yes	No
HVAC	No	No	No	Yes	No
Aerodynamic Loading	No	No	Yes	No	Yes
Thermal	No	No	Yes	Yes	Yes
Control	No	No	No	Yes	Yes
Atmospheric Pressure	Yes	NA	Yes	Yes	Yes

"Hands-on" testing

- Compliments analytical systems studies
- Implementation challenges compared across configurations
- Informs next-gen ground and flight test beds

HEIST/LEAPTech: Propulsion-Airframe Integration Validation

HEIST/Ironbird: Hybrid Sources, Real Time Flight Sim

NASA New Aviation Horizons Initiative

10 Year, \$4 Billion Initiative to Return NASA to X-Planes

New Aviation Horizons – Hybrid Electric Build/Fly/Learn

Hybrid Electric Propulsion

Prove Out Transformational Potential

Roadmap

Near-term test facilities at NASA Armstrong Flight Research Center

Conclusion

We're at the beginning of a 30-50 year propulsion revolution

Green Flight ChallengeUAVsGo2011Now

General Aviation 2020 9 Passenger Commuters 2025

Regional Airliners 2030

Large Aviation 2035

30

Electric propulsion is not merely about propulsion, it's about being able to apply a scale-free technology to fundamentally change how we design vehicles

Synergistic integration of Distributed Electric Propulsion will transform aircraft, and the missions they perform, and potentially society

The age of on-demand services is about to lead to On-Demand Mobility

Establishing Unit Level Test Temperatures

Environmental Stress Screening: Thermal Cycle Test

Environmental

Stre

S

ening De

ct Pre

pitation

Efficiency

latent defects

(with

igth)

rted to patent defects

Temp Rate of			Temperature Delta (ΔT) - °C													Temperature Delta (AT) - °C												
Change	Number												Temp Rate of	Number		-	1		empe	rature	Deita	(Δ1) -						
°C/min	of Cycles	40	50	60		70	80	90	100	110	120	130	140	150	Change °C/min	of Cycles	40	50	60	70	80	90	100	110	120	130	140	150
	1	0.057	0.06	5 0.07	2 0	0.078	0.08	5 0.090	0.096	0.101	0.106	0.111	0.116	0.121	N. K	1	0.189	0.213	0.234	0.253	0.271	0.287	0.303	0.317	0.331	0.344	0.357	0.369
	2	0.111	0.12	5 0.13	88 0).151	0.16	2 0.173	0.183	0.192	0.202	0.210	0.219	0.227	-	2	0.342	0.380	0.413	0.442	0.468	0.492	0.514	0.534	0.553	0.570	0.586	0.601
	4	0.209	0.23	5 0.25	8 0	.279	0.29	8 0.316	0.332	0.348	0.363	0.376	0.390	0.402		4	0.567	0.615	0.655	0.689	0.717	0.742	0.764	0.783	0.800	0.815	0.829	0.841
	6	0.296	0.33	0 0.36	50 0	.387	0.41	2 0.434	0.454	0.473	0.491	0.508	0.523	0.538		6	0.715	0.762	0.798	0.826	0.850	0.869	0.885	0.899	0.911	0.921	0.929	0.937
2	8	0.374	0.41	.4 0.44	9 0	.480	0.50	7 0.532	0.554	0.575	0.594	0.611	0.627	0.643	8	8	0.813	0.852	0.881	0.903	0.920	0.934	0.944	0.953	0.960	0.966	0.971	0.975
	10	0.443	0.48	8 0.52	25 0).558	0.58	7 0.613	0.636	0.657	0.676	0.693	0.709	0.724		10	0.877	0.908	0.930	0.946	0.958	0.966	0.973	0.978	0.982	0.985	0.988	0.990
	13	0.533	0.58	0.62	0 0	.654	0.68	3 0.708	0.731	0.751	0.769	0.785	0.799	0.812		13	0.934	0.955	0.969	0.977	0.984	0.988	0.991	0.993	0.995	0.996	0.997	0.997
	16	0.608	0.65	7 0.69	6 0).729	0.75	7 0.781	0.801	0.819	0.835	0.849	0.861	0.872		16	0.965	0.978	0.986	0.991	0.994	0.996	0.997	0.998	0.998	0.999	0.999	0.999
	20	0.690	0.73	7 0.77	⁷⁵ 0	.805	0.82	9 0.850	0.867	0.882	0.895	0.906	0.915	0.924		20	0.985	0.992	0.995	0.997	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	1	0.080	0.09	0.10	0 0).109	0.11	8 0.126	0.134	0.141	0.148	0.154	0.161	0.167		1	0.227	0.255	0.280	0.302	0.322	0.341	0.359	0.375	0.391	0.406	0.419	0.432
	2	0.153	0.17	3 0.19	91 0).207	0.22	2 0.236	0.249	0.262	0.274	0.285	0.296	0.306		2	0.403	0.445	0.481	0.513	0.541	0.566	0.589	0.610	0.629	0.647	0.663	0.678
	4	0.283	0.31	.6 0.34	15 0).371	0.39	5 0.416	0.436	0.455	0.472	0.489	0.504	0.518		4	0.644	0.692	0.731	0.763	0.789	0.812	0.831	0.848	0.862	0.875	0.886	0.896
	6	0.393	0.43	4 0.47	0 0	0.501	0.52	9 0.554	0.577	0.598	0.617	0.634	0.651	0.666		6	0.787	0.829	0.860	0.884	0.903	0.918	0.931	0.941	0.949	0.956	0.962	0.967
3	8	0.486	0.53	0.57	1 0	0.604	0.63	4 0.659	0.682	0.703	0.722	0.738	0.754	0.768	10	8	0.873	0.905	0.928	0.944	0.956	0.965	0.971	0.977	0.981	0.984	0.987	0.989
	10	0.565	0.61	.3 0.65	53 0	.686	0.71	5 0.740	0.761	0.781	0.798	0.813	0.827	0.839		10	0.924	0.947	0.962	0.973	0.980	0.985	0.988	0.991	0.993	0.994	0.996	0.997
	13	0.661	0.70	9 0.74	7 0).778	0.80	4 0.826	0.845	0.861	0.875	0.887	0.898	0.907		13	0.965	0.978	0.986	0.991	0.994	0.996	0.997	0.998	0.998	0.999	0.999	0.999
	16	0.736	0.78	81 0.81	6 0).843	0.86	5 0.884	0.899	0.912	0.922	0.932	0.939	0.946		16	0.984	0.991	0.995	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000
	20	0.810	0.85	0.87	'9 0).902	0.91	9 0.932	0.943	0.952	0.959	0.965	0.970	0.974		20	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1	0.103	0.11	.6 0.12	9 0).140	0.15	1 0.161	0.170	0.179	0.188	0.196	0.204	0.212		1	0.263	0.294	0.322	0.346	0.369	0.390	0.409	0.427	0.444	0.459	0.474	0.488
	2	0.195	0.21	.9 0.24	1 0).261	0.27	9 0.296	0.312	0.327	0.341	0.354	0.367	0.379		2	0.457	0.502	0.540	0.573	0.602	0.628	0.651	0.671	0.690	0.708	0.723	0.738
	4	0.352	0.39	0 0.42	4 0).454	0.48	0.504	0.526	0.547	0.565	0.583	0.599	0.614	.614 .760	4	0.705	0.752	0.788	0.817	0.841	0.861	0.878	0.892	0.904	0.915	0.924	0.931
	6	0.478	0.52	4 0.56	53 0).596	0.62	5 0.651	0.674	0.695	0.714	0.731	0.746	0.760		6	0.840	0.876	0.902	0.922	0.937	0.948	0.957	0.965	0.970	0.975	0.979	0.982
4	8	0.580	0.62	8 0.66	68 0).701	0.73	0.754	0.776	0.795 0.811	0.826	0.839	9 0.851 12	8	0.913	0.938	0.955	0.967	0.975	0.981	0.985	0.988	0.991	0.993	0.994	0.995		
	10	0.662	0.71	.0 0.74	8 0).779	0.80	5 0.827	0.846	0.862	0.876	0.888	0.898	0.908		10	0.953	0.969	0.979	0.986	0.990	0.993	0.995	0.996	0.997	0.998	0.998	0.999
	13	0.756	0.80	0 0.83	33 0).860	0.88	1 0.898	0.912	0.924	0.933	0.942	0.949	0.955		13	0.981	0.989	0.994	0.996	0.997	0.998	0.999	0.999	1.000	1.000	1.000	1.000
	16	0.824	0.86	62 0.89	0 0).911	0.92	7 0.940	0.950	0.958	0.964	0.970	0.974	0.978		16	0.992	0.996	0.998	0.999	0.999	1.000	1.000	1.000	1.000			
	20	0.886	0.91	.6 0.93	37 0).951	0.96	2 0.970	0.976	0.981	0.985	0.987	0.990	0.991		20	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1	0.125	0.14	2 0.15	57 0	0.170	0.18	3 0.195	0.206	0.217	0.227	0.237	0.246	0.255		1	0.296	0.330	0.360	0.386	0.411	0.433	0.453	0.472	0.490	0.507	0.522	0.537
	2	0.235	0.26	63 0.28	<u>89</u> 0).311	0.33	2 0.352	0.370	0.386	0.402	0.417	0.431	0.445		2	0.504	0.551	0.590	0.624	0.653	0.678	0.701	0.722	0.740	0.757	0.772	0.785
	4	0.415	0.45	7 0.49	94 0).526	0.55	4 0.580	0.603	0.624	0.643	0.660	0.676	0.691		4	0.754	0.798	0.832	0.858	0.879	0.897	0.911	0.923	0.932	0.941	0.948	0.954
	6	0.552	0.60	0 0.64	0 0	.674	0.70	2 0.728	0.750	0.769	0.786	0.802	0.816	0.829		6	0.878	0.909	0.931	0.947	0.958	0.967	0.973	0.978	0.982	0.986	0.988	0.990
5	8	0.657	0.70	05 0.74	4 0).775	0.80	1 0.823	0.842	0.858	0.872	0.885	0.895	0.905	14	8	0.939	0.959	0.972	0.980	0.985	0.989	0.992	0.994	0.995	0.996	0.997	0.998
	10	0.738	0.78	3 0.81	8 0).845	0.86	7 0.885	0.901	0.913	0.924	0.933	0.940	0.947		10	0.970	0.982	0.988	0.992	0.995	0.997	0.998	0.998	0.999	0.999	0.999	1.000
	13	0.825	0.86	63 0.89	91 0).912	0.92	8 0.940	0.950	0.958	0.965	0.970	0.974	0.978		13	0.990	0.994	0.997	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	
	16	0.883	0.91	.3 0.93	84 0).949	0.96	1 0.969	0.975	0.980	0.984	0.987	0.989	0.991		16	0.996	0.998	0.999	1.000	1.000	1.000	1.000					
	20	0.931	0.95	3 0.96	57 0).976	0.98	2 0.987	0.990	0.992	0.994	0.995	0.996	0.997		20	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1	0.147	0.16	6 0.18	33 0).199	0.21	4 0.227	0.240	0.252	0.264	0.275	0.285	0.295		1	0.326	0.362	0.394	0.423	0.449	0.472	0.493	0.513	0.531	0.548	0.564	0.579
	2	0.273	0.30	05 0.33	33 0).359	0.38	2 0.403	0.423	0.441	0.458	0.474	0.489	0.503		2	0.546	0.594	0.633	0.667	0.696	0.721	0.743	0.763	0.780	0.796	0.810	0.823
	4	0.471	0.51	.7 0.55	5 0).589	0.61	8 0.643	0.667	0.687	0.706	0.723	0.739	0.753		4	0.794	0.835	0.865	0.889	0.908	0.922	0.934	0.944	0.952	0.958	0.964	0.969
	6	0.615	0.66	64 0.70	03 0).736	0.76	4 0.787	0.807	0.825	0.841	0.854	0.867	0.877		6	0.906	0.933	0.951	0.963	0.972	0.978	0.983	0.987	0.989	0.992	0.993	0.994
6	8	0.720	0.76	6 0.80	02 0	0.831	0.85	4 0.873	0.889	0.902	0.914	0.923	0.932	0.939	16	8	0.957	0.973	0.982	0.988	0.991	0.994	0.996	0.997	0.998	0.998	0.999	0.999
	10	0.797	0.83	8 0.86	68 0	0.891	0.91	0.924	0.936	0.945	0.953	0.960	0.965	0.970		10	0.981	0.989	0.993	0.996	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000
	13	0.874	0.90	06 0.92	28 0).944	0.95	6 0.965	0.972	0.977	0.981	0.985	0.987	0.989		13	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000				
	16	0.922	0.94	5 0.96	51 0).971	0.979	9 0.984	0.988	0.990	0.993	0.994	0.995	0.996		16	0.998	0.999	1.000	1.000	1.000							
	20	0.959	0.97	4 0.98	33 0).988	0.99	2 0.994	0.996	0.997	0.998	0.998	0.999	0.999		20	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Objectives

- Qualify electrical and electromechanical systems for the flight environment with demonstrated margin
- Environmentally screen equipment for manufacturing defects
 - Goal of precipitation factor > 95%

Test Types

- Acceptance Test
 - Required for flight units
 - Primarily a workmanship screening
- Proto-Qualification Test
 - Units can be used for flight
 - Primarily used to demonstrate design margin while maintaining serviceability for flight
 - 5 10° C margin for thermal
 - +3db margin for vibration
- Qualification Test
 - Units not used for flight
 - Primarily used to demonstrate higher design margin
 - 10 20° C margin for thermal
 - +6db margin for vibration
 - No qualification testing currently planned

Test Conditions

- Thermal Definitions
 - UUT Thermally stabilized, operating: no more than 2 deg C per hour deviation
 - UUT Thermally stabilized, non-operating: within 3 deg C of specified test temperature
- Control temps are measurements of the chamber air near the UUT (not the chamber wall)
- Chamber ramp is 10° C minimum per minute on the UUT
- All units must be operated during all tests and pass a pre- and postenvironmental functional test, unless test logistics require a deviation from this approach

Motors

- Acceptance Test
 - Thermal Temperature Variation Per DO-160 Section 5
 - -35° to +45° C, 12 cycles, ramp at 10° C per minute
 - Random Vibration Not planned
 - Shaft vibration measured during static testing
 - Multiple hours (50+) of static testing => high precipitation factor
 - Random vibe test for motor while operating => high test complexity for little return
 - High Potential Test, motor windings
 - 1000 volts plus twice the rated voltage of the motor
- Proto-Qualification Test
 - Acceptance test as above
 - Thermal Temperature Variation Per DO-160 Section 5
 - -40° to +50° C, 12 cycles, ramp at 10° C per minute
 - Altitude to 15,000 ft per DO-160 Section 4.6.1 for 2 hours

NASA

Motors (cont'd)

- Proto-Qualification Test (cont'd)
 - EMI/EMC
 - Emissions Tests per DO-160 Section 21
 - Currently not planned
 - Design using best practice
 - Conduct system level tests
 - Combined Systems Test (CST)
 - Hanger Radiation Test (HRT)
 - Shock per DO-160 Section 7 Operational Shocks and Crash Safety, Category A
 - 6 g's, 11 ms pulse duration, terminal sawtooth

Controllers

- Acceptance Test
 - Thermal Temperature Variation Per DO-160 Section 5
 - -45° to +70° C, 12 cycles, ramp at 10° C per minute
 - From DO-160 Table 4-1, Category B2
 - Random Vibration per DCP-O-018 Curve A, 8 gRMS
 - Duration: 20 minutes, each axis
- Proto-Qualification Test
 - Acceptance test as above
 - Thermal Temperature Variation Per DO-160 Section 5
 - -55° to +80° C, 12 cycles, ramp at 10° C per minute
 - From Acceptance + 10° C
 - Random Vibration per DCP-O-018 Curve A +3db, 11.3 gRMS
 - Duration: 20 minutes, each axis
 - Altitude to 15,000 ft per DO-160 Section 4.6.1 for 2 hours

Controllers (cont'd)

- Proto-Qualification Test (cont'd)
 - EMI/EMC
 - Emissions Tests per DO-160 Section 21
 - Currently not planned
 - Design using best practice
 - Conduct system level tests
 - Combined Systems Test (CST)
 - Hanger Radiation Test (HRT)
 - Shock per DO-160 Section 7 Operational Shocks and Crash Safety, Category A
 - 6 g's, 11 ms pulse duration, terminal sawtooth

Traction Battery

- Acceptance Test
 - Thermal Temperature Variation Per DO-160 Section 5
 - -15° to +60° C, 12 cycles, ramp at 10° C per minute
 - Discharge during final cycle
 - Random Vibration per DO-160 Curve C, 4.12 gRMS
 - Duration: 60 minutes per axis
 - Meets DO-311 requirement per Section 3.2.1.1
- Proto-Qualification Test
 - Acceptance test as above
 - Thermal Temperature Variation Per DO-160 Section 5
 - -20° to +65° C, 12 cycles, ramp at 10° C per minute
 - Discharge during final cycle
 - Random Vibration per DO-160 Curve C + 3db, 5.83 gRMS
 - Duration: 60 minutes per axis
 - Altitude to 15,000 ft per DO-160 Section 4.6.1 for 2 hours

Traction Battery (cont'd)

- Proto-Qualification Test (cont'd)
 - Shock per DO-160 Section 7 Operational Shocks and Crash Safety, Category A
 - 6 g's, 11 ms pulse duration, terminal sawtooth
 - Per DO-311, do not shock in the suspended upside down position
 - While mounted in the flight configuration with flight mounts, perform 20g, 11ms crash test (TBD1)
 - EMI/EMC
 - Per DO-311 paragraph 2.3.20 (TBD2)

Note: There are several additional non-environmental Qualification Tests. See traction battery specification CEPT-SPEC-002 and DO-311.

- Charge / Discharge cycles
- Short-circuit test
- Overcharge test
- Endurance test
- Explosive containment test

Throttle Encoder

- Acceptance Test
 - Thermal Temperature Variation Per DO-160 Section 5
 - -45° to +70° C, 12 cycles, ramp at 10° C per minute
 - From DO-160 Table 4-1, Category B2
 - Random Vibration per DCP-O-018 Curve A, 8 gRMS
 - Duration: 20 minutes, each axis
- Proto-Qualification Test
 - Acceptance test as above
 - Thermal Temperature Variation Per DO-160 Section 5
 - -55° to +80° C, 12 cycles, ramp at 10° C per minute
 - From Acceptance + 10° C
 - Random Vibration per DCP-O-018 Curve A +3db, 11.3 gRMS
 - Duration: 20 minutes, each axis
 - Altitude to 15,000 ft per DO-160 Section 4.6.1 for 2 hours

Throttle Encoder (cont'd)

- Proto-Qualification Test (cont'd)
 - EMI/EMC
 - Emissions Tests per DO-160 Section 21
 - Currently not planned
 - Design using best practice
 - Conduct system level tests
 - Combined Systems Test (CST)
 - Hanger Radiation Test (HRT)
 - Shock per DO-160 Section 7 Operational Shocks and Crash Safety, Category A
 - 6 g's, 11 ms pulse duration, terminal sawtooth

Instrumentation Pallet, Power Systems, & Electromechanical Sensors – Cabin Location

- Acceptance Test
 - Thermal Temperature Variation Per DO-160 Section 5
 - -20° to +70° C, 12 cycles, ramp at 10° C per minute
 - From DO-160 Table 4-1, Category B1/B2 and DCP-O-018
 - Random Vibration per DCP-O-018 Curve A, 8 gRMS
 - Duration: 20 minutes, each axis
 - Conservative, cabin environment as measured < 1 gRMS
 - Altitude to 15,000 ft per DO-160 Section 4.6.1 for 2 hours
 - Conducted at ambient temp with equipment operating
- Proto-Qualification Test
 - Not required
 - Acceptance Random Vibe Test exceeds MPE level by > 3 db
 - Temp cycle range exceeds operational envelope by > 15° C

Instrumentation, Power Systems, & Electromechanical Sensors – Wing/Nacelle

Acceptance Test

- Thermal Temperature Variation Per DO-160 Section 5
 - -45° to +70° C, 12 cycles, ramp at 10° C per minute
 - From DO-160 Table 4-1, Category B2
- Random Vibration per DCP-O-018 Curve A, 8 gRMS
 - Duration: 20 minutes, each axis

Proto-Qualification Test

- Acceptance test as above
- Thermal Temperature Variation Per DO-160 Section 5
 - -55° to +80° C, 12 cycles, ramp at 10° C per minute
 - From Acceptance + 10° C
- Random Vibration per DCP-O-018 Curve A +3db, 11.3 gRMS
 - Duration: 20 minutes, each axis
- Altitude to 15,000 ft per DO-160 Section 4.6.1 for 2 hours

Cockpit Display

Acceptance Test

- Thermal Temperature Variation Per DO-160 Section 5
 - -20° to +70° C, 12 cycles, ramp at 10° C per minute
 - From DO-160 Table 4-1, Category B1/B2 and DCP-O-018
- Random Vibration per DCP-O-018 Curve A, 8 gRMS
 - Duration: 20 minutes, each axis
 - Conservative, cabin environment as measured < 1 gRMS
- Altitude to 15,000 ft per DO-160 Section 4.6.1 for 2 hours
- Proto-Qualification Test
 - Not required
 - Acceptance Random Vibe Test exceeds MPE level by > 3 db
 - Temp cycle range exceeds operational envelope by > 15° C

To Be Determined (TBD)

- TBD1: Crash shock specification for battery mount
- TBD2: EMI/EMC test requirements for battery, per DO-311

Defect Type	Thermal Screen	Vibration Screen
Defective Part	X	X
Broken Part	X	X
Improperty Installed Part	X	X
Solder Connection	X	X
PCB Etch, Shorts and Opens	X	X
Loose Contact		X
Wire Insulation	X	
Loose Wire Termination	X	X
Improper Crimp Or Mating	X	
Contamination	X	
Debris		Х
Loose Hardware		X
Chafed, Pinched Wires		X
Parameter Drift	X	
Hermetic Seal Failure	X	
Adjacent Boards/Parts Shorting		X

Table 4.3: Assembly Defect Types Precipitated by Thermal & Vibration Screens

Reference RADC-TR-82-87

Table 4.3 indicates that vibration screens are generally more effective for loose contacts, debris and loose hardware while temperature cycling screens are not effective. Thermal screens are generally more effective for part parameter drift, contamination and improper crimp or mating type detects while vibration screens are not. For other defect classes listed in the table, both thermal and vibration screens are effective, but the relative degree of effectiveness of one screen type over the other is not precisely known. These are some of the uncertainties which must be dealt with in planning a screening program. Historically, on average, 20% of the detects are found to be responsive to vibration screens and 80% to temperature cycling screens. (Reference publication IES Environmental Stress Screening Guidelines for Assemblies).

	Altit	ude (ft)	Temperature (degrees F)							
	Pressurized Compartment*	Unpressurized Compartment or mounted externally	Low Temperature (external or non- temp controlled compartment)	Low Temperature (temp-controlled compartment)	High Temperature					
Category I	75000	220000 or zoom altitude of aircraft	-60	0	+160					
Category II	75000	100000 or zoom altitude of aircraft	-60	0	+160					
Category III	40000	40000 or zoom altitude of aircraft	-60	0	+160					
Category IV	45000	45000 or zoom altitude of aircraft	-20	0	+160					
Category V	50000	50000 or zoom altitude of aircraft	-60	0	+160					

Table 8-3: Temperature & Altitude Test Requirements

National Aeronautics and Space Administration

www.nasa.gov

Figure 5. Seasonal mean and typical extreme temperature profiles representing summer (hot) and winter (cold) conditions over Edwards AFB.

