

P-55. Validation of Cloud Properties from Multiple Satellites Using CALIOP Data

Christopher R. Yost¹, Patrick Minnis², Kristopher M. Bedka², Patrick W. Heck³, Rabindra Palikonda¹, Sunny Sun-Mack¹, and Qing Trepte¹ ³CIMSS, University of Madison-Wisconsin, Madison, WI

¹Science Systems & Applications, Inc., Hampton, VA

²NASA Langley Research Center, Hampton, VA

Introduction

The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) is routinely applied to multispectral imagery from several geostationary and polar-orbiting imagers to retrieve cloud properties for weather and climate applications. Validation of the retrievals with independent datasets is continuously ongoing in order to understand differences caused by calibration, spatial resolution, viewing geometry, and other factors. The CALIOP instrument provides a decade of detailed cloud observations which can be used to evaluate passive imager retrievals of cloud boundaries, thermodynamic phase, cloud optical depth, and water path on a global scale. This paper focuses on comparisons of CALIOP retrievals to retrievals from MODIS, VIIRS, AVHRR, GOES, SEVIRI, and MTSAT.

Data and Validation Strategy

- Satellite imager data: Aqua-MODIS, CERES Clouds Edition 4: subsampled 1-km pixels SNPP-VIIRS, CERES Clouds Edition 1; subsampled 750-m pixels
- NOAA-18 AVHRR 4-km Global Area Coverage (GAC) data
 GOES-11, GOES-12, Meteosat-9, SEVIRI, and MTSAT-1R (collectively referred to as
- geostationary or GEO). CERES Clouds Edition 4: subsampled 4-km pixels MODIS, AVHRR, and GEO data are from January, April, July, and October (JAJO) of 2008. VIIRS data are from JAJO 2012.

Products used to validate imager retrievals: CALIPSO Vertical Feature Mask (VFM)

- CALIPSO 5-km Cloud Layers Product (05kmCLay)
- CALIPSO 333-m Cloud Layers Product (333mCLay)

Spatial/temporal matching: CALIPSO provides cloud heights on various spatial scales ranging from 333 m to 80 km. Many of the CALIPSO products are provided at 5-km resolution which is comparable to the spatial resolution of most imagers. For this reason, all satellite data are matched spatially to 5-km segments of the CALIPSO ground track. Imager pixels within 2.5 km of each segment's midpoint and within 15 minutes of the CALIOP scan time are considered matches. While MODIS views the CALIPSO ground track near nadir, VIIRS, AVHRR and GEO imagers frequently have larger view angles. All VIRS, AVHRR, and GEO pixels were corrected for parallax. In the following socions all differences are computed as MODIS//IJRS/AVHRP/GEO minus CALIOR

INSTRUMENT/PRODUCT	APPROX. SPATIAL RES.	CLOUD PROPERIES PROVIDED			
VFM	1/3 – 80 km	cloud mask, phase, and opacity	1		
05kmCLay	5 km	cloud top altitude (CTA), optical depth (COD), and ice water path (IWP)			
333mCLay	1/3 km	cloud top altitude		1	
			a 1		

Cloud Detection and Phase

CALIOP VFM data were used to identify clear and cloudy scenes. Segments with cloud fraction CF < 0.5 and CF > 0.5 were considered clear and cloudy, respectively, and segments containing faint cirrus detected by CALLOP using 80-km horizontal averaging were excluded from the analysis. The fraction of correctly identified clear and cloudy scenes (FC) is shown in the chart below for all four imagers and for different surface types.

GLOBAL FRACTION O	F CORRECTLY ID	ENTIFIED CLEAR	AND CLOUDY S	CENES	The cloud mask makes the correct clear/clo
	MODIS	VIIRS	AVHRR	GEO	determination in over 85% of cases over oc
DAY					and land surfaces. Snow/ice surfaces are n
Land & Ocean	0.89	0.87	0.86	0.85	problematic, especially at hight.
Ocean	0.91	0.88	0.86	0.86	MODIS and VIIRS show remarkable consiste
Land	0.87	0.85	0.83	0.84	AVHRR and GEO FC values are typically wi
Snow/Ice	0.83	0.84	0.82	0.98*	2-5% of the MODIS and VIIRS values. Redu agreement relative to MODIS is expected here.
NIGHT					of time and resolution differences.
Land & Ocean	0.89	0.87	0.87	0.86	
Ocean	0.90	0.88	0.87	0.86	Cloud phase retrievals agree with CALIOP
Land	0.85	0.84	0.85	0.84	84% of the time except over snow/ice. Dayl
Snow/Ice	0.77	0.72	0.70	0.85*	reach up to 94%.
	*fewer than 1	00 data points			
					Enouviers coupered surfaces are observed m

VFM data were also used to validate imager cloud phase retrievals. Where possible, a Find table if the associated valuate integer values the reservents. Finder possible, a single cloud phase was assigned to each 5-km segment. For scenes with more than one phase, the dominant phase was chosen. For particularly compete scenes, the quality flags helped guide the phase selection. The fraction of correctly identified scenes is shown in the place of the phase selection. the chart below for scenes with 100% cloud cove

GLOBAL FRACTION OF SCENES WITH CORRECTLY IDENTIFIED PHASE								
	MODIS	VIIRS	AVHRR	GEO				
DAY								
Land & Ocean	0.92	0.91	0.89	0.87				
Ocean	0.94	0.92	0.90	0.89				
Land	0.87	0.86	0.85	0.83				
Snow/Ice	0.88	0.86	0.77	0.82*				
NIGHT								
Land & Ocean	0.87	0.88	0.87	0.87				
Ocean	0.88	0.89	0.87	0.88				
Land	0.84	0.84	0.85	0.82				
Snow/Ice	0.80	0.81	0.81	0.74*				

The cloud mask makes the correct clear/cloudy rmination in over 85% of cases over ocean and land surfaces. Snow/ice surfaces are more problematic, especially at night MODIS and VIIRS show remarkable consistency

84% of the time except over snow/ice. Daytime FC values are up to 8% higher than nighttime and reach up to 94% Snow/ice-covered surfaces are observed much

Water clouds dominate imager phase retrievals when the upper-layer cirrus has COD < 0.5. IR-only retrievals are able to detect cirrus with COD as low as 0.3. Results shown here are from MODIS data

Cloud optical depth (COD) comparisons are limited to non-opaque ice-phase clouds corresponding to COD < ~6, because they do not completely attenuate the lidar beam

The smallest differences occur for nighttime snow/ice-free conditions when IR-only algorithms are used to retrieve COD. Comparisons with CALIOP constrained retrievals have smaller biases and RMSDs but constrained retrievals occur less requently during daytime. See Garnier et al. (2012) and Young and Vaughan (JAOT, 2009) for details on constrained retrievals

Differences are largest for daytime snow/ice surfaces because of increased reflection from bright surfaces. Techniques are under development to mitigate these difficulties

	(GLOBAL COD BIASES, RMS DIFFERENCES [unitles								
		MODIS		VI	IRS	AVHRR		GEO		
		Bias	RMSD	Bias	RMSD	Bias	RMSD	Bias	RMSD	
	DAY									L
	Snow/Ice-Free	0.86	4.27	0.91	4.83	1.34	4.14	2.25	10.61	
	Snow/Ice-Covered	13.23	24.95	4.60	7.09	6.17	20.02	-0.70*	1.35*	L
	NIGHT									
	Snow/Ice-Free	0.44	1.84	0.37	1.67	0.37	0.99	0.60	1.88	
	Snow/Ice-Covered	4.20	6.31	2.99	5.20	2.66	4.84	1.99*	2.03*	Т
ANDORS 4 1 2 2	Same as a	bove but		PSO con	strained	retrieval	s only			• • •
1		R io	0.80			:	0.000			

Cloud Top Altitude

Cloud top altitude (CTA) differences (km, imager minus CALIOP) were computed as a function of thermodynamic (water/ice), solar zenith angle (day/night), surface type (snow/ice-free, snow/ice-covered), and cloud opacity opaque, opaque). Results for both single and multi-layer clouds are summarized graphically in the histograms I and more detail, including root-mean-square differences (RMSD), are given in the tables for single-layer clouds.

listograms at left show CTA differ

for single and multi-laver cloud so

where the imagers and CALIOP a on phase are shown in the tab

AVHRR and GEO retrievals

snow/ice are similar.

the lack of a CO2 channel. Biases

right

OVERSHOOTING CLOUD TOP HEIGHTS

Cloud top height retrievals were improved for overshooting clouds using co-located MODIS, GEO, and CloudSat data. See Griffin et al. (JAMC, 2016) for details. Height assignment of overshooting tops is especially challenging using IR observations alone because these clouds are typically colder than any vertical level in a co-located sounding or NWP profile.

CloudSat thunderstorm anvil and OT region

Comparison of OT heights from SEVIRI and CloudSat data

GEODAL CIA BIAGES, MUS DIFFERENCES [KII]									
SINGLE LAYER WATER CLOUDS		MC	MODIS		VIIRS		AVHRR		EO
		Bias	RMSD	Bias	RMSD	Bias	RMSD	Bias	RMSD
NON-OPAQUE	DAY								
	Snow/Ice-Free	-0.17	1.10	-0.09	1.04	-0.46	1.21	-0.52	1.36
	Snow/Ice-Covered	0.21	1.30	0.35	1.24	0.60	1.69	*	,
	NIGHT								
	Snow/Ice-Free	0.00	0.87	0.11	0.94	0.49	1.12	0.22	1.34
	Snow/Ice-Covered	0.11	1.15	0.17	0.92	0.07	1.07	0.01*	0.45
	DAY								
	Snow/Ice-Free	-0.13	0.84	-0.10	0.93	-0.17	0.95	-0.31	0.98
OPAQUE	Snow/Ice-Covered	0.09	1.00	0.02	1.09	0.81	1.80	0.02*	0.37
	NIGHT								
	Snow/Ice-Free	0.05	0.81	0.11	0.86	0.43	1.02	0.13	0.98
	Snow/Ice-Covered	0.11	1.03	0.12	0.98	0.41	1.23	0.25*	1.16*

both non-opaque and opaque water										
cloud tops are within 200 m of CALIOP	GLOBAL CTA BIASES, RMS DIFFERENCES [km]									
underestimated during the day and			MODIS		VIIRS		AVHRR		GEO	
overestimated at night.		SINGLE LAYER ICE CLOUDS		RMSD	Bias	RMSD	Bias	RMSD	Bias	RMSD
CALIOP is much more sensitive to non- opaque ice clouds than the imagers. The nighttime algorithm retrieves CTA within 2 km of CALIOP for non-opaque ice, as opposed to within 3 km for the	ЗŪ	DAY								
		Snow/Ice-Free	-2.09	3.69	-1.43	2.80	-2.92	3.74	-2.85	3.79
	PAC	Snow/Ice-Covered	-0.99	3.24	-1.55	2.60	-1.23	2.68	-1.69*	3.51*
	2 Z	NIGHT								
	Q	Snow/Ice-Free	-0.24	2.27	-0.50	2.43	-1.72	3.26	-1.49	3.16
daytime algorithm.		Snow/Ice-Covered	-0.92	3.53	-0.89	2.85	-1.58	4.01	-1.09*	1.18*
Retrievals for opague ice are within 1.5		DAY								
km for all four imagers. RMS		Snow/Ice-Free	-0.60	1.80	-1.03	1.88	-1.15	2.00	-1.37	2.17
differences for opaque clouds are 1-2	ð	Snow/Ice-Covered	-0.57	1.88	-1.02	1.86	-0.39	1.46	0.89*	2.39*
km lower than for non-opaque clouds.	Ad	NIGHT								
AVHRR and GEO retrievals show larger	ľ	Snow/Ice-Free	-0.44	1.71	-0.60	1.78	-1.18	2.05	-1.26	2.23
biases than MODIS and VIIRS over		Snow/Ice-Covered	-1.06	2.32	-0.70	1.77	-1.52	2.63	0.06*	1.10*
snow/ice-free surfaces possibly due to										

Acknowledgements CALIPSO and CERES Products were obt the Atmospheric Science Data Center (ASDC) Contact Information http://www-pm.larc.nasa.gov

Ice Water Path

Summary

Cloud property retrievals from imagers such as Aqua-MODIS, VIIRS, AVHRR, and GEO imagers are being validated with A-Train sensors such as CALIOP

Cloud mask and phase retrievals agree with CALIOP VFM data at least 85% of the time for snow/ice-free surfaces. Thin cirrus with optical depth greater than about 0.5 can be distinguished from underlying water clouds.

Top altitudes for opaque water and ice clouds are retrieved to within 200 m and 1.5 km of CALIOP values, respectively. Larger biases exist for non-opaque clouds and clouds over snow/ice surfaces.

Nighttime optical depths and IWP compare reasonably well with CALIOP and biases are smaller when compared to CALIOP constrained retrievals. Increased surface reflection causes large overestimates over snow/ice surfaces during the day. IR-only techniques can help reduce daytime biases.

MODIS and VIIRS retrievals typically exhibit the smallest biases and RMSDs, but AVHRR and GEO retrievals are nearly as accurate as MODIS and VIIRS in many cases