

#JOURNEYTOMARS

Space Radiation Research for Human Space Missions

Tony C. Slaba NASA Langley Research Center

Richard F. Barry Colloquium Old Dominion University March 17, 2016

- Human mission to Mars presents unique challenges
 - ~9 months to reach Mars
 - Radiation environment is more severe in deep space than in low Earth orbit
- Radiation exposure identified as a key risk for Mars
 - Radiation risk estimates exceed NASA limits
 - Exceeding limits does not preclude mission from occurring
 - Risks for cancer, central nervous system, and cardiovascular system
 - Major driver is biological uncertainty
- Efforts to reduce risk and uncertainty
 - Improve physics and biology models
 - Countermeasure development
 - Vehicle design and optimization

NASA'S JOURNEY TO MARS

Outline

- Background
- Space radiation environments
- Physical interactions
- Radiation Transport
- Biological consequences and risk

Organization

Background

Background

- A multi-scale problem spatially and temporally
 - Particle transport is described across the solar system, through complex vehicle shielding and tissue, down to cellular levels
 - Solar activity includes daily variation and longer term cycles
 - Physical interactions occur in nanoseconds
 - Biological consequences can extend many years after the exposure
- Relevant energies and particles in space radiation applications
 - Energies ranging from keV/n up to TeV/n
 - Particles include heavy ions, neutrons, e⁻, e⁺, gammas, and some mesons

Space Radiation Environment

- The galactic cosmic ray (GCR) environment is omnipresent in space and fluctuates between solar extremes
 - Exposures differ by a factor of ~2 between nominal solar extremes
 - Broad spectrum of particles (most of the periodic table) and energies (many orders of magnitude)
 - Difficult to shield against due to high energy and complexity of field

Space Radiation Environment

- Solar particle events (SPE) are intense bursts of protons from the Sun
 - Difficult to predict occurrence, spectral shape, or magnitude
 - More likely to occur during periods of heightened solar activity (solar max)
 - Energies up to several hundred MeV (may extend up to GeV)
 - Presents serious acute risk to astronauts if not adequately shielded

Physical Interactions

- The ambient radiation field is modified as it passes through bulk matter
 - Charged particles are slowed down
 - Secondary particle production can occur
- Atomic interactions
 - Well known with existing models
 - Interaction between positive ions and orbital electrons of target
 - Main physical mechanism for ion energy deposition
 - ~10⁶ atomic interactions occur in a cm of matter
 - Production of delta ray e⁻ along the ion track (track structure)

Typical mammalian cell

- Nuclear interactions
 - Significant uncertainties remain in nuclear models
 - Nuclear elastic: think of classical "pool-ball" collision
 - Nuclear inelastic: think of "pool-balls" breaking apart into pieces and some new pieces possibly being created
 - May be separated by a fraction to many cm of matter
 - Nuclear interactions are critical in describing space radiation transport

Artist depiction of cosmic ray induced atmospheric cascade. [Simon Swordy (U. Chicago), NASA]

Radiation Transport - Beams

- Low energy (E < 500 MeV/n) proton and carbon beams are sometimes used in cancer therapy
 - Atomic interactions precisely specify where charged particles stop in matter
 - Leads to a localized energy deposition site referred to as the Bragg peak
- Monte Carlo methods are typically used in clinical applications to describe beam interactions with tissue
 - Green's function methods have been developed at ODU in support of NASA applications
 - Tweed, Rockell, Walker, et al.

Radiation Transport - Space

- NASA has distinct requirements for radiation analysis models
 - Need to optimize vehicle design and minimize costs
 - Radiation constraints are included throughout the design process
 - Analysis tools need to be highly efficient to facilitate rapid turnaround in design cycle
 - Most of the end-to-end runtime is spent in radiation transport procedures
- Radiation transport methods are classified into two main categories
 - Deterministic: solve the relevant transport equations using analytical and numerical methods
 - Monte Carlo: use random-number generators to sample interactions and track particle trajectories

Radiation Transport - Space

- For space applications, it is recognized that Monte Carlo methods are computationally restrictive
 - Monte Carlo simulations in simple slab geometries required ~200 CPU years
 - Fully detailed geometries like ISS would present an even greater challenge
- Monte Carlo codes used in space applications
 - PHITS, Geant4, FLUKA, MCNP6
 - These codes are "general purpose"
 - Sometimes used in treatment planning, nuclear reactor design, accelerator design, and high energy physics experiments
- Deterministic codes used in space applications
 - HZETRN
 - Not a "general purpose" code
 - Developed specifically for space applications with some applicability in beam-line analysis
 - Most space application analyses run on a single CPU in seconds-minutes

- ~40 years ago, Wilson et al. (NASA Langley)^{1,2} begin investigating deterministic methods for space radiation transport applications
 - Starting point was the 3D linear Boltzmann transport equation

$$\left[\Omega \bullet \nabla - \frac{1}{A_j} \frac{\partial}{\partial E} S_j(E) + \sigma_j(E)\right] \phi_j(x, \Omega, E) = \sum_k \int \sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'$$

- ~40 years ago, Wilson et al. (NASA Langley)^{1,2} begin investigating deterministic methods for space radiation transport applications
 - Starting point was the 3D linear Boltzmann transport equation

$$\left[\Omega \cdot \nabla - \frac{1}{A_{j}} \frac{\partial}{\partial E} S_{j}(E) + \sigma_{j}(E)\right] \frac{\phi_{j}(x, \Omega, E)}{P} = \sum_{k} \int \sigma_{jk}(E, E', \Omega, \Omega') \phi_{k}(x, \Omega', E') d\Omega' dE'$$

Flux of type *j* particles at position
x with kinetic energy *E* moving in
the direction of Ω

1. Wilson and Lamkin, Perturbation theory for charged-particle transport in one dimension. Nucl. Sci. & Eng. 57(4): 292-299; 1975.

2. Wilson et al., Transport methods and interactions for space radiations, NASA RP-1257, 1991.

- ~40 years ago, Wilson et al. (NASA Langley)^{1,2} begin investigating deterministic methods for space radiation transport applications
 - Starting point was the 3D linear Boltzmann transport equation

1. Wilson and Lamkin, Perturbation theory for charged-particle transport in one dimension. Nucl. Sci. & Eng. 57(4): 292-299; 1975.

2. Wilson et al., Transport methods and interactions for space radiations, NASA RP-1257, 1991.

- ~40 years ago, Wilson et al. (NASA Langley)^{1,2} begin investigating deterministic methods for space radiation transport applications
 - Starting point was the 3D linear Boltzmann transport equation

$$\begin{bmatrix} \Omega \cdot \nabla - \frac{1}{A_j} \frac{\partial}{\partial E} S_j(E) + \sigma_j(E) \end{bmatrix} \phi_j(x, \Omega, E) = \sum_k \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega, \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega') \phi_k(x, \Omega', E') d\Omega' dE'}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega') \phi_k(x, \Omega', E')}{\sum_{k=1}^{k} \int \frac{\sigma_{jk}(E, E', \Omega') \phi_k(x, \Omega', E')}{\sum_{k=1}^{k$$

1. Wilson and Lamkin, Perturbation theory for charged-particle transport in one dimension. Nucl. Sci. & Eng. 57(4): 292-299; 1975.

2. Wilson et al., Transport methods and interactions for space radiations, NASA RP-1257, 1991.

- Solution methodology allows for converging sequence of physical approximations to be implemented
 - Simple and highly efficient solutions can be used in early design when vehicle is not well defined
 - Increasing fidelity of solution methodology can be matched to fidelity of vehicle design
- Straight ahead approximation: $\sigma_{jk}(E,E',\Omega,\Omega') = \tilde{\sigma}_{jk}(E,E')\delta(1-\Omega \cdot \Omega')$
 - Reduces 3D equation to 1D
 - Most accurate for heavier ions where produced particles are forward directed

$$\left[\frac{\partial}{\partial x} - \frac{1}{A_j}\frac{\partial}{\partial E}S_j(E) + \sigma_j(E)\right]\phi_j(x, E) = \sum_k \int \tilde{\sigma}_{jk}(E, E')\phi_k(x, E')dE'$$

- Solution method for 1D transport equation
 - Invert Boltzmann equation and write as a Volterra integral equation
 - Solution to homogeneous equation is valid over sufficiently small step-sizes, h
 - Homogeneous solution is inserted into Volterra equation to allow O(h²) marching procedures
 - High speed computational procedures implemented¹⁻⁴ and resulted in first HZETRN code

^{1.} Wilson et al., Transport methods and interactions for space radiations, NASA RP-1257, 1991.

^{2.} Slaba et al., Faster and more accurate transport procedures for HZETRN. J. Comp. Phys. 229: 9397-9417; 2010.

^{3.} Slaba et al., Reduced Discretization Error in HZETRN. J. Comp. Phys. 234: 217-229; 2012.

^{4.} Slaba, Faster Heavy Ion Transport for HZETRN. NASA TP 2013-217803, 2013.

Bi-directional Transport Methods

- Verification and validation for straight ahead approximation (HZETRN)
 - Extensively validated using space-flight measurements on ISS and shuttle^{1,2}
 - Compared to recent data from the Mars Science Laboratory Radiation Detector (MSL/RAD)³
 - Verification against Monte Carlo simulations have been performed^{2,4}
- Shortcomings:
 - Straight ahead approximation is less accurate for light ions ($Z \le 2$) and neutrons
 - Light ions and neutrons are produced in all directions following a nuclear collision
 - Will not predict back-scattered leakage or build-up effects within matter
- Next level of approximation: bi-directional transport
 - Neutron transport was extended to evaluate forward and backward directions⁵
 - Further improvements fully coupled forward/backward transport through multiple elastic collisions⁴
 - Light ion semi-analytic solution also implemented for low energies⁴

^{1.} Wilson et al., Verification and validation: High charge and energy (HZE) transport codes and future development. NASA TP-2005-213784, 2005.

^{2.} Slaba et al., Pion and electromagnetic contribution to dose: Comparisons of HZETRN to Monte Carlo results and ISS data. Adv. Space Res. 52: 62-78; 2013.

^{3.} Matthia et al., Particle Spectra on the Martian Surface. SWSC, accepted; 2015.

^{4.} Slaba et al., Coupled neutron transport for HZETRN. Radiat. Meas. 45: 173-182; 2010.

^{5.} Clowdsley et al., A comparison of the multigroup and collocation methods for solving the low-energy neutron Boltzmann equation. Can. J. Phys. 78: 45-56; 2000.

Bi-directional Transport Methods

- Neutron production is separated into forward and isotropic components¹
 - Forward component associated with higher energies
 - Isotropic component associated with lower energy target de-excitation
- Fluxes are similarly separated into forward and isotropic components
 - Forward component of flux is solved using the straight ahead approximation
 - Isotropic neutron solution obtained by solving a coupled set of equations²

$$\begin{bmatrix} \frac{\partial}{\partial x} + \sigma_n(E) \end{bmatrix} \phi_n^{(f)}(x, E) = \int \tilde{\sigma}_{nn}^{(f)}(E, E') \phi_f(x, E') dE' + \int \tilde{\sigma}_{nn}^{(b)}(E, E') \phi_b(x, E') dE' \\ \begin{bmatrix} -\frac{\partial}{\partial x} + \sigma_n(E) \end{bmatrix} \phi_n^{(b)}(x, E) = \int \tilde{\sigma}_{nn}^{(f)}(E, E') \phi_b(x, E') dE' + \int \tilde{\sigma}_{nn}^{(b)}(E, E') \phi_f(x, E') dE' \end{bmatrix}$$

- Solution method for coupled equations²
 - Neumann series solution
 - Each term in series solved using collocation methods and back-substitution for matrix inversion

^{1.} Clowdsley et al., A comparison of the multigroup and collocation methods for solving the low-energy neutron Boltzmann equation. *Can. J. Phys.* **78**: 45-56; 2000 2. Slaba et al., Coupled neutron transport for HZETRN. *Radiat. Meas.* **45**: 173-182; 2010.

Verification and Validation

- Planetary surfaces have albedo environments
 - Incoming GCR/SPE interact with soil and back-scattered neutrons are emitted
 - Mars also has a thin atmosphere which further complicates the albedo environment

Matthia et al., Particle Spectra on the Martian Surface. SWSC, accepted; 2015.
Slaba et al., Variations in lunar neutron dose estimates. *Rad. Res.* 176: 827-841; 2011.

3D Transport Methods

- Neutron production is separated into forward and isotropic components¹
 - Forward component associated with higher energies
 - Isotropic component associated with lower energy target de-excitation
- Fluxes are similarly separated into forward and isotropic components
 - Forward component of flux is solved using the straight ahead approximation
- Forward flux generates isotropic neutron source - Evaluated at any point within arbitrary geometry
- Isotropic neutron field solved over N stream directions¹
 - Bi-directional neutron transport (N=2) implemented along opposing streams
 - Final step evaluates light ion target fragments produced from isotropic neutrons

Verification (I)

Nucleon fluence induced by the 1956 Webber SPE in test geometry

- First verification of 3D methods utilized simple spherical geometry
 - Directed (instead of isotropic) boundary conditions to emphasize 3D features
- 3DHZETRN agrees with Monte Carlo to the extent they agree with each other
 - Significant improvement over straight ahead approximation (N=1)
 - Main difference between codes is runtime: seconds for 3DHZETRN and years for Monte Carlo

Verification (II)

Nucleon fluence induced by the 1956 Webber SPE in test geometry

- Second verification utilized simple spherical geometry with two materials
 - Tissue sphere (astronaut proxy) embedded in spherical aluminum shell
- 3DHZETRN agrees with Monte Carlo to the extent they agree with each other
 - Significant improvement over straight ahead approximation (N=1)
 - Main difference between codes is runtime: seconds for 3DHZETRN and years for Monte Carlo

Verification (III)

Nucleon fluence induced by the 1956 Webber SPE in test geometry

- Latest verification utilized complex combinatorial geometry
 - Tissue sphere (astronaut proxy) embedded in cylindrical aluminum shell with internal boxes
- 3DHZETRN agrees with Monte Carlo to the extent they agree with each other
 - Significant improvement over straight ahead approximation (N=1)
 - Main difference between codes is runtime: seconds for 3DHZETRN and years for Monte Carlo

Impact of Transport Code Updates

- Recent updates in transport code development have had a significant impact on shielding strategies for deep space missions
 - Previous paradigm: shielding for GCR was ineffective but did not make problem worse
 - New paradigm: local minimum provides engineers with an optimal design range
 - Places renewed emphasis on shield design and material development

Total dose equivalent versus aluminum thickness for a GCR boundary condition

Exposure Quantities

- Flux or fluence
 - Example units: particles/(cm²-MeV/n-day)
- Linear energy transfer (LET)
 - Energy deposited per unit distance travelled
 - Space radiation is "high LET" compared to "low LET" gammas
 - Example units: keV/µm
- Dose
 - Energy deposited per unit mass (energy/mass) and per unit time
 - Example units: mGy/year
- Dose equivalent
 - Radiation quality factor is used to quantify increased biological effectiveness of high LET particles compared to gamma rays
 - Example: mSv/year
- Effective dose
 - Weighted sum of tissue averaged dose equivalent values
 - Tissue weights quantify relative radiosensitivity of individual tissues
 - Provides a measure of human mortality risk from radiation exposure
- Risk of Exposure Induced Death/Cancer (REID/REIC)

NASA Cancer Risk Model

- NASA cancer risk model
 - Based on epidemiological data from Atomic bomb survivor cohort
 - Utilizes background cancer incidence and mortality rates for general population
 - Distinction drawn between average US population and never smokers
 - Survival probabilities for general population also included

$$REID = \sum_{T} \int_{a_E}^{\infty} \frac{\tilde{S}(a)}{\tilde{S}(a_E)} \lambda_T^{(M)}(a, a_E, H_T) e^{-\sum_{T'} \int_{a_E}^{a} \lambda_T^{(M)}(t, a_E, H_T) dt} da$$

- Dose and dose rate reduction factor (large uncertainties)
 - Scales biological response from acute A-bomb exposure to lower dose rates
 - Mars mission exposures will reach over 1 Sv but at a low rate of ~1 mSv/day
 - ~4-5 Sv is the acute whole body exposure with 50% lethality rate (LD₅₀)
 - Therapy regimens deliver \gg 20 Sv but protracted over time
- Quality factor (large uncertainties)
 - Scales biological response from low LET gammas to response for high LET radiation
 - Derived mainly from limited animal studies with accelerator beams
 - Increased tumor lethality and other factors not accounted for in present model
 - Preliminary model for cardiovascular risk (non-cancer) being considered (larger uncertainties)

Risk Estimate – 1 year mission

- NASA permissible exposure limits
 - Astronaut career REID does not exceed 3%
 - Protect against uncertainties in such projections at a 95% CL
 - Detriments to central nervous system and cardiovascular systems being studied
- Risk assessment for 1 year mission is 1.83% with upper 95% confidence level of 7.57%
 - NASA radiobiology program is focused on reducing these uncertainties

Biological Consequences and Risk

- Exposure to the space radiation environment presents a serious health risk to astronauts on deep space missions
 - Large uncertainties connected to the biological response
 - Detriments to central nervous system and cardiovascular systems being studied
- In order to reduce these uncertainties, radiobiology experiments are performed
 - Experiments performed at ground based accelerators
 - Goal is to elucidate biological mechanisms (stress, damage, repair, mutation)
 - Difficult to reproduce the full space radiation environment on the ground
 - Effort underway to develop a GCR simulator at the NASA Space Radiation Laboratory

nasa.gov/centers/johnson/slsd/ab out/divisions/hacd/hrp/aboutspace-radiation.html

humanresearchroadmap.nas a.gov/evidence/reports/Car cinogenesis.pdf

Summary

- Radiation exposure to astronauts on long duration deep space missions is a serious concern
- NASA continues to improve models to better characterize the radiation fields
 - Measurement gaps on the ground and in space are being addressed
- 3DHZETRN is a significant step forward for radiation transport at NASA
 - Computational efficiency has been maintained despite added complexity
 - Transport code agrees with Monte Carlo to the extent they agree with each other in most cases
 - Nuclear physics models/databases need to be updated
- Radiobiology research being pursued to reduce uncertainties
 - Cancer risk model continues to be improved with emphasis on dose-rate and quality factor
 - CNS effects are being studied experimentally with some modeling efforts as well
 - Preliminary model for cardiovascular risk exists, but is highly uncertain
 - GCR simulator efforts will provide a more realistic exposure scenario for accelerator studies

Tony.C.Slaba@nasa.gov