
Optical and radar measurements of the meteor speed distribution

Althea Moorhead, Bill Cooke NASA Meteoroid Environment Office

Peter Brown, Margaret Campbell-Brown University of Western Ontario

Meteoroids 2016 June 7, 2016

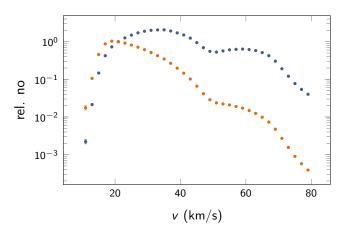
Meteoroid speed distribution(s)

¹ As represented in Janches et al. (2014)

Goals

Have: Start with the meteor speed distribution to constant limiting radar amplitude

Improve: Re-weight the radar speed distribution to constant limiting KE

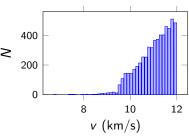

- Use improved bias estimations
- Use modern forms of β

New: Characterize associated uncertainties

New: Re-weight the radar speed distribution to constant limiting magnitudes and compare with optical measurements

Correcting to a limiting mass

$$q \propto m^a v^b$$
, flux $\propto m^- \alpha \rightarrow N_{>m_{ref}} = N v^{-b \alpha/a}$ (Taylor, 1995)



Ionization efficiency

- ► Jones (1997) predicts $q \not\propto v^b$
- Experiments confirm this for iron (Sternovsky, 2015)
- ► Radar detections show a "cliff" near 9.5 km/s

$$q=-rac{eta(v)}{\mu v}rac{dm}{dt}$$

Mass ablation rate

$$\frac{dm}{dt} \propto m^{2/3}$$

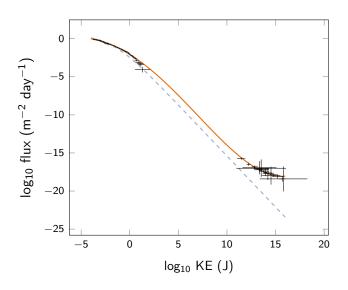
$$\frac{dm}{dt} \propto m$$

$$\frac{dm}{dt} = -\frac{\Lambda A}{2\xi} \left(\frac{m}{m_{frag}} \right)^{x} \left(\frac{m}{\rho_{m}} \right)^{2/3} \rho_{a} v_{m}^{3}$$

Kinetic energy distribution

Impact experiments are KE-limited

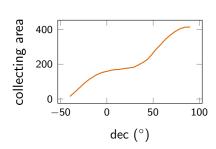
$$\begin{split} p &= 5.24 \times \textit{d}^{19/18} \text{BH}^{-1/4} \left(\frac{\rho_p}{\rho_t} \right)^{1/2} \left(\frac{\textit{v}_p \cos \beta}{\textit{c}_s} \right)^{2/3} \\ &= 0.739 \times \text{KE}^{19/54} \, \text{BH}^{-1/4} \frac{\rho_p^{4/27}}{\rho_t^{1/2}} \textit{v}_p^{-1/27} \left(\frac{\cos \beta}{\textit{c}_s} \right)^{-2/3} \end{split}$$

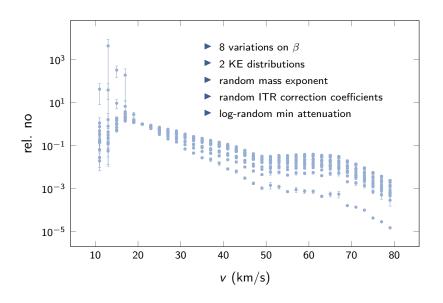

 Meteor observations are closer to being KE-limited than mass-limited

$$q \sim m \ v^{3.5}$$

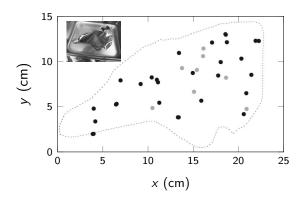
 $\sim \text{KE } v^{1.5}$

Kinetic energy distribution

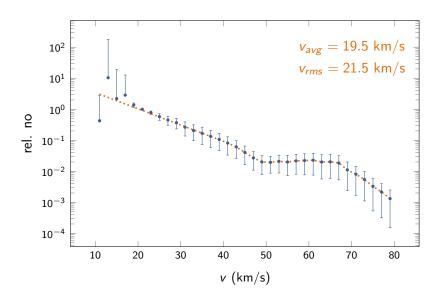

Kinetic energy distribution


Radar bias corrections

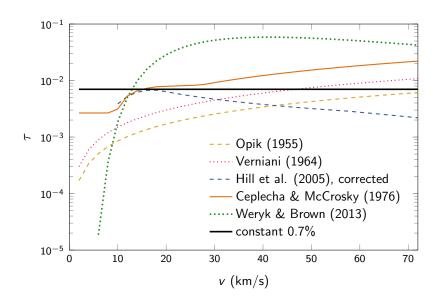
- Pulse repetition effect
- ► Finite velocity effect
- ▶ Initial trail radius effect
 - Empirical relation (with uncertainties!) from Jones & Campbell-Brown (2005)
- Beam pattern/radiant visibility



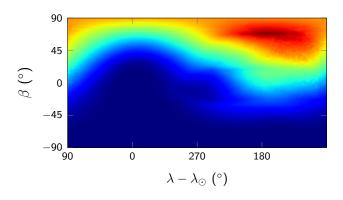
Corrected speed distribution



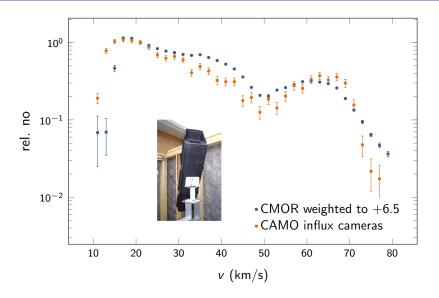
Gravitational focusing constraints



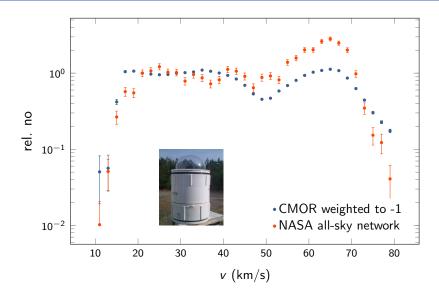
 Cratering rate on Genesis near L1 was within 40% of near-Earth rate (Love & Allton, 2006)


Weighted average speed distribution

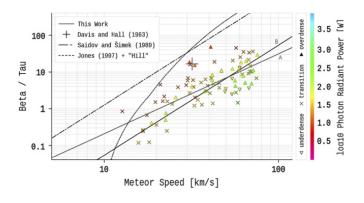
Luminous efficiency



Radiant coverage


CAMO influx camera speed distribution

Limiting magnitude of +6.5



NASA all-sky network speed distribution

Limiting magnitude ~ -1

Luminous efficiency

$$\log_{10}(\beta/\tau) = c_v \log_{10} v - c_L \log_{10} L - c_c$$

Conclusions

Improved: Radar speed distribution to constant limiting KE

 Improved treatment of β yields more slow meteors

New: Characterized associated uncertainties

Large uncertainty remains for slowest bins

New: Good agreement with video data for some β s

Future: Better characterization of τ , especially at low

speed

Future: Refine speed distribution with additional in-situ

constraints