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Abstract. Analytical expressions for column number density (CND) are developed for optical line of sight paths through 

a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) 

and flow from a sonic orifice (M = 1).  Sonic orifice solutions are approximate, developed using a fair simulacrum fitted 

to the free molecule solution.  Expressions are also developed for a spherically-symmetric thermal expansion (M = 0).  

CND solutions are found for the most general paths relative to these sources and briefly explored.  It is determined that 

the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path 

parallel to the source plane that intersects the plume axis.  For the effusive case this value is exactly twice the CND found 

along the ray originating from that point of intersection and extending to infinity along the plume’s axis.  For sonic 

plumes this ratio is reduced to about 4/3.  For high Mach number cases the maximum CND will be found along the axial 

centerline path. 
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INTRODUCTION 

Providers of payloads carried aboard the International Space Station (ISS) must conduct analyses to demonstrate 

that any planned gaseous venting events generate no more than a certain level of material that may interfere with 

optical measurements from other experiments or payloads located nearby [1].  This requirement is expressed in 

terms of a critical maximum column number density ( critCND or crit ), with units of molecules/m
2
.  Depending on 

the level of rarefaction, such venting may be characterized by low rate effusion [2], or by a sonic distribution at 

higher levels.  Since the relative locations of other sensitive payloads are often unknown because they may refer to 

future additions, this requirement becomes a search for the maximum CND along any path.  

In another application, certain astronomical observations make use of CND to estimate light attenuation from a 

distant star through gaseous plumes, such as the “Fermi Bubbles” emanating from the vicinity of the black hole at 

the center of our Milky Way galaxy [3]. This allows astronomers to infer the amount of material being expelled via 

those plumes. 

This paper presents analytical CND expressions developed for general straight paths based upon a free molecule 

point source model for steady effusive flow and for a distribution fitted to model flows from a sonic orifice.  In this 

Mach number range, it is demonstrated that the maximum CND from a distant location occurs along paths parallel to 

the source plane that intersect the plume axis.  For effusive flows this value is exactly twice the CND found along 

the ray originating from that point of intersection and extending to infinity along the plume’s central axis.  For sonic 

plumes this ratio is reduced to about 4/3.  CND expressions are also developed for certain high M cases and more 

generally for a spherically-symmetric spherical expansion. 

 



 

VENTING SOURCE MODEL 

To describe thermally effusive and sonic orifice venting, this study uses a solution of the collisionless Boltzmann 

equation for fluxes from a directionally-constrained point source meant to describe directed flow from a nozzle exit 

over 2 steradians centered on the source normal [4].  For a source with a flow rate of N  molecules/s at temperature 

T  having cylindrical symmetry and a bulk exit velocity eu aligned with the source normal, one finds the expression 

for steady state number density n at location (r, ) simplifies to 
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In Eq. (1) ,21 RT  speed ratio ,eus   and cossw  .  The speed ratio is sometimes described as a 

molecular Mach number, where Ms 2 and  is the specific heat ratio for the species under consideration. 

Normalization factor 1A  is described by 
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The column number density (CND, ) is given by the integrated effect of the vent plume density along a given 

path l in free space: 
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With a requirement for the CND not to exceed ,crit  one may use solutions of Eq. (3) to determine the physical 

envelope near the source where crit is violated.  One technical drawback is that Eq. (1) reaches a singularity at the 

source origin, so some finite critical envelope will always be predicted. However, this limitation is not consequential 

for systems of any practical size when such envelopes become insignificant in comparison. 

 

EFFUSIVE (M = 0) CND EXPRESSIONS 

For the case where venting occurs at such a low rate that it is characterized by a sufficiently high Knudsen 

number Kn with respect to the vent’s diameter and there is no bulk motion (thermal effusion only), then the density 

field generated by Eq. (1) reduces to 
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This case also describes the density field due to outgassing or low rate evaporation of volatile substances from a 

single-sided planar surface of finite dimensions when viewed from a distance, regardless of geometric details such 

as if the surface is a disk or a rectangle [5].  Substituting Eq. (4) into Eq. (3): 
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1-D Centerline Path, Low Rate Effusion 

 
 

FIGURE 1. Geometry for computing CND along centerline path (1-D).  

 

For a path that is coincident with plume axis x and begins some distance 00 xr  from the origin, so 0xrl 

and 0  (Fig. 1).  The solution to Eq. (5) in this case is simply 
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Where the subscript “cl,e” represents “centerline, effusive case.” 

 

Since the density distribution is maximized along the plume axis, it is tempting to conclude Eq. (6) produces the 

highest level CND. However, as the results below indicate, this is not so. 

2-D Path Intersecting Centerline and Source Surface Plane, Low Rate Effusion 

A much more useful case involves a path that begins below the source plane, makes angle  with it as it enters 

the plume region at distance ,0r and intersects the plume centerline at 0x .  This two dimensional case is depicted in 

Fig. 2 below. 

 
 

FIGURE 2. Two-dimensional CND geometry intersecting source normal and source surface plane. 

 

Notice that  cossin rl  .  Also, one may use the Law of Cosines to relate r and l to .  Eq. (5) becomes 
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The solution to Eq. (7) is 
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Taking the derivative of Eq. (8) with respect to inclination angle , one finds the highest values for  occur when 

 = 0.  Under these circumstances, one may imagine 0r stretches out to infinity.  In this limit it is a vanishingly small 

distortion of the right triangle comprised of , ,0x and 0r to imagine it describing a path that is actually parallel to 

the source plane at a height of 0x instead of intersecting it at some exceedingly distant point 0r .  Applying 

L’Hospital’s Rule to Eq. (8) for  = 0 yields 
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This special limiting case may be confirmed by evaluating Eq. (5) directly across a horizontal path 0x above the 

source surface, extending to infinity in both directions.  Due to symmetry, an observer at 0x for this type of source 

would measure the same CND  along and perpendicular to the plume axis.  

3-D General Path, Low Rate Effusion 

When the CND column density integration path does not intersect the source normal axis, evaluation of Eq. (5) 

becomes more complex.  Using Fig. 3 below, one finds that the plane containing r and l defines the triangle for 

application of the Law of Cosines involving angle , but as this plane is inclined at angle  off the plume axis one 

cannot use quantities contained within that plane to provide a useful relationship containing .  By taking the dot 

product of l with x to define path inclination angle , another plane parallel to the plume axis may be constructed, 

and 
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FIGURE 3. 3-D CND path originating above source surface plane. 

 

The vertical components of r measured from the source origin is recast in terms of parameters viewed from the 

beginning of the path origin.  Since 0r emanates from the source origin, its length contribution viewed from l is 

negative.  The integral for this case is similar to Eq. (7), yielding 
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When the path begins in the source plane or below it, .20     Eq. (11) is maximized when the path intersects 

the source surface plane and  and  both equal zero, and the configuration simplifies to that from the previous 

section. 

 

SONIC ORIFICE (M = 1) CND EXPRESSIONS 

Unfortunately the form of Eq. (1) is too complicated to integrate analytically when M = 1, so it was replaced by a 

fit curve having a simpler analytical form.  Based on evaluation of Eq. (1) for monatomic, diatomic, and certain 

polyatomic molecules, it was found the angular distribution was generally enveloped between cos
3 and cos

4 (Fig. 

4). 

 

 
 

FIGURE 4. Plume model contours at M = 1 for gases having various specific heat ratios. 

 

Based on consideration of the ISS maximum CND requirement, it was decided to match the centerline value of 

Eq. (1) and to replace the angular distribution by cos
3.  Without much distortion, approximate sonic orifice 

solutions in this study (subscript "s") will be described by 
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1-D Centerline Path, Sonic Orifice Case 

Figure 1 provides the geometric description for this configuration, and substitution of Eq. (12) into Eq. (3) yields 
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The similarity between Eq. (13) and Eq. (6) is clear if one were to replace the product of all factors outside the 

integral of Eq. (5) by K. 

2-D Path Intersecting Centerline and Source Surface Plane, Sonic Orifice Case 

If one were to apply the geometric relationship  cossin rl  in Fig. 2 to Eq. (12), the resulting CND becomes 
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As 0 for the same geometric considerations discussed regarding the effusive case: 
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This result may be found directly by computing the integral for the corresponding transverse optical path that 

intersects the plume axis at 0x .  Since this result is true for an enveloping curve fit to Eq. (1) under sonic conditions, 

Eq. (15) should be considered an approximate relationship. 

Maximum CND Observations for Higher Mach Number Sources 

Incidentally, reviewing the approach taken to fit an axisymmetric plume’s angular distribution to some power m 

of the cosine function,  
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it is noted that the axial case, beginning at 0xr   and independent of , yields .
~

0xKcl    From previous results, 

one might be tempted to assume the distant-limit transverse CND follows a progression of   ,1 mmcl 

however straightforward application of Eq. (3) for this path results in [6] 
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For integer values of m < 6 the results of Eq. (17) exceed unity, meaning a transverse path from a distant location 

intersecting the plume axis will experience a higher CND than an axial path from that intersection point outwards.  

For higher integer values of m this observation no longer holds.  The axial CND then provides the maximum value 

for evaluating ISS requirements.  

3-D General Path, Sonic Orifice Case 

Continuing with the setup depicted in Fig. 3 and applying Eq. (10) to relate r and  to l, eventually one obtains 
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In the limit where ,20      = , and ,0 we recover Eq. (15). 



RADIAL POINT SOURCE SOLUTIONS 

To describe gas being liberated from a source with no directional constraints and no bulk velocity, this study 

uses a solution of the collisionless Boltzmann equation developed by Narasimha [7].  Under these conditions 

(subscript “r”)  
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A general CND path geometry is depicted in Fig. 5 below.  In this arrangement there is no source surface plane 

or plume axis, but there is a length 0r separating the initial location from the spherically-symmetric source.   

 

 
 

FIGURE 5. Geometry for evaluating CND due to a radial point source. 

 

For angle  between 0r and l the Law of Cosines may be applied to produce 
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The product sin0r represents the minimum distance between the path and the source for Fig. 5 geometry 0x .  

When   Eq. (20) produces the radial solution for a path traveling away from the source 
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and when 2  the path begins in a direction at right angles to the local flowfield and 

 

r



22









 .               (22) 

  

The maximum CND for a path that extends to infinity in both directions and approaches the origin no closer than 

0r is twice the value of Eq. (22). 

 

CONCLUDING REMARKS 

A study was undertaken to determine closed form analytical solutions for a number of CND configurations 

frequently encountered and otherwise performed numerically using intuition.  It was observed for CNDs associated 

with paths in the presence of low-rate effusive venting and higher-rate sonically-constrained discharges that 

maximum CNDs should occur along paths parallel to the source plane that intersect the plume axis. Furthermore, 
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maximum CNDs for paths immersed in presence of an unconstrained radial source do not lie along radial 

trajectories. 

Working with fit curves in the form of ,cos m
 it was further determined for integer values of m > 5, 

approximating the behavior of spacecraft thruster plumes, that maximum CND values switched from transverse to 

axial paths.  

It is hoped that use of these solutions will greatly reduce the amount of effort needed to assess CNDs for a 

variety of applications ranging from satisfying spacecraft requirements to making astronomical assessments. 
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