

JWST telescope integration and test progress

Gary W. Matthews^a, Tony L. Whitman^a, Lee D. Feinberg^b, Mark F. Voyton^b, Juli A. Lander^b, Ritva Keski-Kuha^b a – Harris Corporation b – NASA Goddard Space Flight Center

SPIE XXXX-XX

June 2016

OTIS AI&T Status

Telescope Test Activities

- <u>Optical Telescope Element (OTE) and OTE/IS</u>IM (OTIS) integration will occur at GSFC in the large SSDIF clean room
- Most of OTE Optical Ground Support Equipment (OGSE) has been completed and was used for Pathfinder integration operations

Pathfinder OGSE Test Program

- A series of three cryo tests planned prior to the flight that increase in complexity and designed to cover all aspects of the flight test program
 - CCT Chamber Commissioning with the OGSE installed Complete
 - OGSE#1 Center of Curvature and Dynamic Testing Complete
 - OGSE#2 Half Pass and Pass and a Half Testing
 - Thermal Pathfinder (TPF) OTIS Thermal Simulation
- Optical Telescope Element (OTE) Integration
 - Optical integration of the flight OTE scheduled for Fall 2015

JSC Optical GSE

- Work continues at JSC to prepare for the OTIS cryo test
- First series of tests were optical based tests
 - Check out of the optical ground support equipment
 - Increasing complexity for the optical equipment
- Excellent optical results with many lessons learned

OGSE Test Program

Pathfinder Thermal

PF Updated to be more Flight Like

 Checkout Optical GSE that has not seen cryo before: CoC test, Hanging Config, Photogrammetry

OGSE-1

Complete

- No flight hardware except flight spare PMSA/SMA
- Dynamics and Thermal Distortion portion of PF Augmentation occur here
- Checkout Pass and a half test with flight AOS and GSE source plate system

OGSE-2

Complete

 Uses BIA camera as SI simulator

- Thermal GSF Checkout (includes SVTS)
- Dry run cooldown and warmup
- Will allow risk reduction of some OTE Thermal Balance (design validation off the critical path)

Range of Motion

Range of COCOA and ACF actuation systems

COCOA	V1 (mm)	V2 (mm)	V3 (mm)	RV1 (urad)	RV2 (urad)	RV3 (urad)
Range	+/- 24.6	+/- 32	+/- 32	N/A	+/-5.6	+/-5.6
Cryo Position (margin)	-7.4 (70%)	7.2 (76%)	0.4 (98%)	-0.6	0.5 (92%)	-0.5 (90%)

ACF	Decenter (mm)	Tilt (mrad)
Range	N/A	10.8
Cryo Position (margin)	N/A	0.15 (99%)

Photogrammetry Accuracy

Hardware Component	Measurement Direction	Requirement	Measured Value	Margin
PM to AOS	Piston	0.1mm	0.04mm	62%
	Decenter	0.1mm	0.08mm	16%
	Tilt	0.15mrad	0.09mrad	40%
	Clocking	1.0mrad	0.31mrad	69%
SM to AOS	Piston	0.15mm	0.08mm	43%
	Decenter	1.25mm	0.65mm	48%
	Tilt	0.335mrad	0.27mrad	24%

Typical PG Accuracies

	2σ M1 (mm)	2σ M2 (mm)	2σ M3 (mm)
ACF	0.040	0.067	0.124
SM	0.034	0.020	0.058
ASPA Support Arm	0.047	0.021	0.022
ASPA	0.021	0.007	0.008
AOS Base	0.020	0.015	0.013
PM	0.023	0.010	0.014
Strut Base	0.116	0.024	0.053

PMSA Figure Error

ASPA Image Location

		Difference between Best Image Location and			
	ASPA Source	Predicted Location			
Instrument FOV	Designation	dM1 (mm)	dM2 (mm)	dM3 (mm)	
NIRCamB	I-1	0.987	0.137	-0.120	
NIRCamB	I-3	0.578	0.055	-0.395	
NIRCamB	I-4	0.792	0.168	0.127	
NIRCamA	I-5	0.784	0.327	-0.151	
NIRCamA	I-6	0.749	-0.176	-0.192	
FGS1	I-7	0.579	0.030	-0.204	
FGS1	I-8	0.531	0.013	-0.176	
FGS1	I-9	0.167	0.099	-0.215	
FGS2	I-11	0.946	0.060	-0.092	
FGS2	I-13	0.870	0.069	-0.094	
NIRISS	I-15	-0.129	0.051	-0.267	
NIRISS	I-16	0.084	0.074	-0.188	
MIRI	I-23	0.013	0.195	0.135	
MIRI	I-24	-0.217	0.108	-0.385	
NIRSPEC	I-25	0.265	0.102	-0.191	
NIRSPEC	I-26	-0.035	0.094	-0.247	
Average		0.435	0.088	-0.166	
	Standard Deviation	0.410	0.103	0.144	
Range		1.204	0.503	0.530	

Shadowgram Test

Thermal Pathfinder (TPF) Test

- Final test prior to OTIS is thermally focused
 - How does the system cool down with an OTIS simulator
- Incorporation of all the thermal hardware
 - DSERS
 - SVTS
 - Zero-Q heaters
 - Actively cooled ACF's due to "no He gas" for the OTIS test

HOSS Thermal Configuration

SVTS Hub and Rim

 The first of three Optical Ground Support Equipment and Thermal Tests is complete

Test results have been excellent

- COCOA works as designed
 - The two PMSA's were phased
- PG system is fully operational
- Isolation system worked as designed
 - Short during cryo temperatures identified and will be corrected prior to OGSE#2
- Pathfinder has been very important and enables the flight program
 - Provides critical experience in preparation for the critical path flight program
 - Well worth the investment by the program