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It’s A Multidisciplinary World
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Physics-Based Aerodynamic Simulation

• Today’s design approaches typically rely on Euler and RANS simulations, each 

requiring O(102)-O(103) CPU hours on moderate HPC resources

• Current projection is full aircraft LES as a grand challenge problem in the 2045 

timeframe using an entire leadership-class machine, with DNS following in 2080*

• Hybrid RANS-LES simulations are the current state of the art and may require 

O(107) CPU hours on large HPC resources

Euler Equations
(inviscid)

Direct Numerical

Simulations
(all scales resolved)

Reynolds-averaged

Navier-Stokes
(turbulence modeled)

Large-Eddy

Simulations
(large scales resolved)

Increasing physics, increasing cost

Accurate predictions for many aerospace

concepts require at least hybrid RANS-LES:

Pushing these methods into

the design cycle is critical

* Spalart, P., “Strategies for Turbulence Modeling and Simulations,” Int. J. Heat 

and Fluid Flow, 21(3), 2000, pp. 252-263.



Where should control jets be located?

At what orientation?

What should the unsteady blowing profiles look like?

What is the optimal phase difference between jets?

How should the outer mold line be altered?

What are the optimal kinematics?

What is the optimal shape?

How can we minimize

noise on approach?

Biologically-Inspired UAV’s

Landing Gear

Configuration

Active Flow Control

…and what should my grid look like?

Goal: Enable formal, physics-based design optimization

based on large-scale computational simulations of vehicles 

where we may have no a priori knowledge nor experience

Physics-Based Aerodynamic Design



Design Approach

• Systematic design of a complete vehicle may involve thousands of 

design variables

• The number of function evaluations required by zeroth-order

(e.g., sampling) optimization techniques increases dramatically with only 

a few design variables

→  Gradient-based methods are the only feasible approach

Bear in mind that we have not even touched on:

• Robust design optimization

• Multidisciplinary optimization

• Uncertainty quantification

• …

We are only at the tip of the iceberg!



Forward-Mode Sensitivity Analysis

• Conventional sensitivity analysis techniques such as finite differencing or 
direct differentiation consider a perturbation to a single input parameter

• This effect is then propagated through the simulation to ultimately determine 
a single element of the desired gradient vector

• This class of methods is referred to as forward-mode differentiation

• These methods can effectively provide sensitivities of many outputs with 
respect to a single input

• However, the cost of these approaches scales linearly with the number of 
design variables

• E.g., for a problem with 1,000 variables, central differencing will require 
2,000 (very accurate!) simulations just to obtain a single gradient vector

→  These approaches are prohibitively expensive in our context

So how can we efficiently compute sensitivity

information for thousands of simulation parameters?



Motivation for Adjoint Methods

• The adjoint approach flips the entire sensitivity analysis upside down by 
solving an auxiliary PDE and instead pushing the dependence on the number 
of design variables to the very end of the process

• In this manner, everything is done backwards; hence, adjoint methods are 
often referred to as reverse-mode differentiation

Adjoints can provide sensitivities of an output function for 

virtually unlimited numbers of input parameters

at the cost of a single additional simulation



Adjoint Solution Example
F-15 Configuration

• Transonic turbulent flow over modified 
F-15 configuration

• Propulsion effects included as well as 
simulated aeroelastic deformations of 
canard/wing/h-tail

• Objective is lift-to-drag ratio

• Adjoint solution indicates where 
objective is sensitive to perturbations 
in both space and time

Forward

Solution

Reverse

Solution



Adjoint Solution Example
Wind Turbine Configuration

• Incompressible turbulent flow over 
NREL Phase VI wind turbine

• Overset grids used to model 
rotating blade system

• Objective function is based on the 
torque

Forward Solution

Reverse Solution



Some Challenges



The Unsteady Adjoint Equations

Complexity

• Considerably more involved than the 
Navier-Stokes equations

• Every line of the baseline code must be 
differentiated with respect to flow solution, 
grid coordinates, and design variables

• Tremendous amount of software 
infrastructure required

• Implemented by hand and verified using 
complex variables

Sheer Expense

• Full linearizations must be evaluated at 
every time step

Page 1 of 4 of the adjoint equations derived and implemented in:

Nielsen, E.J., and Diskin, B., “Discrete Adjoint-Based Design for 

Unsteady Turbulent Flows on Dynamic Overset Unstructured 

Grids,” AIAA Journal, Vol. 51, No. 6, June 2013.



Possible Approaches

• Brute force: Store the entire forward solution

• Recompute: Store the forward solution periodically and recompute

intermediate time steps as needed

• Approximate: Store the forward solution periodically and interpolate 

intermediate time planes somehow

Big Data

Since the adjoint equations must be integrated backwards in time,

we must have the forward solution available at every time plane



• The amount of data adds up fast – consider a small example:

– 50,000,000 grid points and 10,000 physical time steps

– Assume a 1-equation turbulence model (5+1 unknowns per grid point)

– Dynamic grids (3 additional unknowns per grid point)

→ 50,000,000 x 10,000 x (6+3) x 8 bytes = 36 Terabytes

• This amount of data is not prohibitively large, but we need to run 

much bigger problems, say 109 grid points with 106 time steps

• So far, the challenge has been efficiently getting the data to/from 

the disk at every time step

In FUN3D, we store all of the forward data to disk

Big Data



• Approaches used to write conventional

checkpoint files are prohibitively

expensive

• FUN3D uses parallel, asynchronous,

direct access read/writes from every

rank

– Flow solver is writing the previous time                                                                

plane while the current time step is                                                               

computing

– Adjoint solver is pre-fetching earlier time planes while the current time step is 

computing

• This strategy has performed well so far, but is not infinitely scalable

Big Data



Application Examples



Example: UH-60A Blackhawk
Overview

• Such simulations are tremendously complex; here we are only doing aero

• Overset grid system consists of 9,262,941 nodes / 54,642,499 tetrahedra

• Compressible RANS:  Mtip=0.64, Retip=7.3M, m=0.37, a=0.0º

• Blade pitch has child motion governed by pilot collective and cyclic controls:

1 1cos sinc c s       

Blade

pitch Collective Lateral cyclic
Longitudinal cyclic



Example: UH-60A Blackhawk
Problem Definition and Results

• Objective is to maximize time-averaged lift while satisfying trim constraints:

• Separate adjoint solutions required for all three functions

• 67 design variables include 64 thickness and camber variables across the blade 

planform, plus collective and cyclic control inputs
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such that

• Feasible region is quickly located

• Both moment constraints are satisfied within 

tolerance at the optimal solution

• Final controls: c=6.71º, 1c=2.58º, 1s=-7.00º

Flow

Solves

(2 hrs)

Adjoint

Solves

(3 hrs)

Total Time

Baseline 0.023 - - -

Design 0.103 4 4
0.8 days

(38,400 CPU hrs)

LC



Example: UH-60A Blackhawk
Results

Pitching

Moment

Lift

Lift has gone up significantly; 

vehicle is trimmed in both 

pitch and roll



Multidisciplinary Example
Sonic Boom Mitigation

• Multidisciplinary adjoint has been very successful for sonic boom mitigation –

discrete sensitivities of ground-based metrics to aircraft geometry

• Recently extended to include atmospheric UQ

• Many other disciplines being considered / pursued
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Optimal

Loudness at ground 

level reduced from 

65.2 to 59.8 dBA



Mesh Adaptation Examples

Sonic Boom

Reentry

High-Lift

Propulsion
Courtesy Chris Heath



A Remaining Challenge: Chaos

• Theory states these sensitivities are well-defined and bounded

Why does conventional approach not work?

For chaotic flows,

• The finite time average approaches the infinite time average

• The sensitivity for a finite time average does not approach the sensitivity for the 
infinite time average

Wish to compute sensitivities of infinite time averages for chaotic flows 
(Hybrid RANS-LES, LES, DNS)

Chaotic shedding for 0012

M∞=0.1  Re=10,000  a=20
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Adjoint solution grows

exponentially in reverse time
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A Remaining Challenge: Chaos
Least-Squares Shadowing (MIT)

• Least-Squares Shadowing (LSS) method proposed by Wang and 
Blonigan (MIT)

• Key assumption is ergodicity of the simulation: long time averages 
are essentially independent of the initial conditions

• Also assumes existence of a shadowing trajectory

• The LSS formulation involves a linearly-constrained least squares 
optimization problem which results in a set of optimality equations

• The LSS adjoint equations are a globally coupled system in 
space-time

• To date, work at MIT has focused on solutions of this system for 
academic dynamical systems containing O(1) state variables

• Langley and MIT are collaborating to explore the extension to CFD 
systems: enormous computational challenge for even the smallest of 
problems



A Remaining Challenge: Chaos
Least-Squares Shadowing (MIT)

Shedding NACA 0012

M∞=0.1  Re=10,000  a=20

102,940 grid points

Instantaneous Lift vs Time
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• Goal is to compute an AOA 
sensitivity that would allow us to 
maximize the time-averaged lift over 
final 1,000 time steps



A Remaining Challenge: Chaos
Least-Squares Shadowing (MIT)

• FUN3D used to output data for use in LSS solver

• Nonlinear residual vectors; Jacobians of residual, objective function

• For this tiny problem, this is 1.1 TB of raw data

• Dimension of the resulting LSS
matrix problem:

102,940 grid points x 5 DOFs
x 2,000 time planes = 1.03 billion

• Stand-alone LSS solver has been
developed where decomposition is
performed in time with a single time
plane per core

• Global GMRES solver used with a
local ILU(0) preconditioner for each
time plane – has proven vastly
inadequate

• Required ~10 hours on 2,000 cores

This is a toy problem – target simulations are 106 larger!

Desired matrix dimension = 109 x 106 = 1015



“If you build it, we will come…”

Thank you to the organizers for having me!


