

Compendium of Single Event Effect Results from NASA Goddard Space Flight Center

Martha V. O'Bryan¹, Kenneth A. LaBel², Carl M. Szabo¹, Dakai Chen², Michael J. Campola², Megan C. Casey², Jean Marie Lauenstein², Edward P. Wilcox¹, Raymond L. Ladbury², Stanley A. Ikpe³, Jonathan A. Pellish, ² and Melanie D. Berg¹

1. AS&D, Inc.; 2. NASA GSFC; 3. NASA LaRC

Martha O'Bryan

Abstract: We present the results of single event effects (SEE) testing and analysis investigating the effects of radiation on electronics. This paper is a summary of test results.

Introduction

types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is challenging. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of

latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event

paper submitted to the 2016 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "Compendium of Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center" by M. Campola, et al.

Test Techniques and Setup

Dynamic – the DUT was continually exercised

while being exposed to the beam. The events and/or

bit errors were counted, generally by capturing with a

high-speed oscilloscope, digital input/output (DIO)

device, microprocessor, FPGA, or by comparing the

DUT output to an unirradiated reference device or with

an expected output (Golden chip or virtual Golden

chip methods). In some cases, the effects of clock

speed or device operating modes were investigated.

Results of such tests should be applied with caution

irradiation; data were retrieved and errors were

power consumption was monitored for SEL or other

destructive effects. In most SEL tests, functionality

SEUs, and for hard failures such as SEGR. Detailed

descriptions of the types of errors observed are noted

in the individual test reports on radhome.nasa.gov and

criteria for SETs are specific to the device and

measurement of the linear energy transfer threshold

(LET_{th}) and cross section at the maximum measured LET. The LET_{th} is defined as the maximum LET value at which no effect was observed at an effective

fluence of 1×10^7 particles/cm². In the case where

measured LET or determined approximately as the

LET_{th} parameter from a Weibull fit. In the case of

SEGR and SEB experiments, measurements are made of the SEGR or SEB threshold V_{DS} (drain-to-

source voltage) as a function of LET and ion energy at

similar to heavy ion exposures. However, because

protons usually cause SEE via indirect ionization of

recoil particles, results are parameterized in terms of

proton energy rather than LET. Because such proton-

induced nuclear interactions are rare, proton tests also

feature higher cumulative fluences and particle flux

The DUT was mounted on an X-Y-Z stage in

front of a 100x lens that produces a spot diameter of

approximately 1 μ m at full-width half-maximum

(FWHM). The X-Y-Z stage can be moved in steps of

0.1 μ m for accurate determination of SEE-sensitive

regions in front of the focused beam. An illuminator,

together with a charge-coupled device (CCD) camera

and monitor, were used to image the area of interest

thereby facilitating accurate positioning of the device

in the beam. The pulse energy was varied in a

continuous manner using a polarizer/half-waveplate

combination and the energy was monitored by splitting

off a portion of the beam and directing it at a

2) SEE Testing - Pulsed Laser Facility Testing:

Proton SEE tests were performed in a manner

a fixed V_{GS} (gate-to-source voltage).

rates than heavy ion experiments.

calibrated energy meter.

2) SEE Testing - Proton:

events are observed at the smallest LET tested, LET_{th}

application being tested.

Static - the DUT was configured prior to

Biased – the DUT was biased and clocked while

DUTs were monitored for soft errors, such as

SET testing was performed using high-speed oscilloscopes controlled via LabVIEW®. Individual

Heavy ion SEE sensitivity experiments include

A. Test Facilities

used are listed in Tables I, II and III. LETs in addition angle of incidence of the ion beam with respect to the DUT, thus changing the path length of the ion through the DUT and the "effective LET" of the ion.

Energies and LETs available varied slightly from one Northwestern Medicine Chicago Proton Center (CDH), Hampton University Proton Therapy Institute (HUPTI), Mass General Francis H. Burr Proton Therapy (MGH), Scripps Proton Therapy Center (Scripps), and Tri-University Meson Facility

Laser SEE tests were performed at the pulsed laser facility at the Naval Research Laboratory (NRL). Single photon absorption method was used with the laser light having a wavelength of 590 nm resulting in a skin depth (depth at which the light intensity decreased to 1/e - or about 37% - of its intensity at the surface) of 2 μ m. A nominal pulse rate of 1 kHz was utilized. Pulse width was 1 ps, beam spot size ~1.2 µm.

Table I: LBNL Test Heavy Ions

lon	Energy (MeV)	Surface LET in Si (MeV•cm²/mg) (Normal Incidence)	Range in Si (µm)			
¹⁸ O	183	2.2	226			
²² Ne	216	3.5	175			
⁴⁰ Ar	400	9.7	130			
²³ V	508	14.6	113			
⁶⁵ Cu	660	21.2	108			
⁸⁴ Kr	906	30.2	113			
¹⁰⁷ Ag	1039	48.2	90			
¹²⁴ Xe 1233		58.8	90			
LBNL 10 MeV per amu tune						

Table III: NSRL Test Heavy Ions LET in Si Range in

	lon	(MeV)	(MeV•cm²/mg) (Normal Incidence)	Si (µm)	
I	¹⁹⁷ Au	32505	24.7	3700	

Table II: TAMU Test Heavy Ions

				Surface						
		lon	Energy	LET in Si	Range in					
	1011		(MeV)	(MeV•cm²/mg)	Si (µm)					
				(Normal Incidence)						
		¹⁴ N	210	1.3	428					
		²⁰ Ne	300	2.5	316					
⁴⁰ Ar			599	7.7	229					
	⁶³ Cu 944		944	17.8	172					
		⁸⁴ Kr 1259 ¹⁰⁹ Ag 1634		25.4	170 156 156					
				38.5						
	¹²⁹ Xe 1934		1934	47.3						
		¹⁹⁷ Au	2954	80.2	155					
		TAMU 15 MeV per amu tune								
		⁸⁴ Kr	2081	19.8	332					
		¹³⁹ Xe	3197	38.9	286					
		TAMU 25 MeV per amu tune								

amu = atomic mass unit

Test Results Overview

Principal investigators are listed in results are summarized in Table VI. Unless otherwise noted all LETs are in MeV•cm²/mg and all cross sections particles/cm² unless otherwise noted.

Table IV: List of Principal

Investigators			
Principal Investigator (PI)	Abbreviation		
Melanie D. Berg	MB		
Megan C. Casey	MCC		
Michael J. Campola	ipal Investigator (PI) Abbreviation hie D. Berg MB n C. Casey MCC hel J. Campola Chen DC hond L. Ladbury Marie Lauenstein M. Szabo CS han A. Pellish MB MB MB MB MB MC MC MCC MCC MCC MCC MC		
Dakai Chen	DC		
Raymond L. Ladbury	RLL		
Jean-Marie Lauenstein	JML		
Carl M. Szabo	CS		
Jonathan A. Pellish	JP		
Edward (Ted) P. Wilcox	TW		

and Conventions

LET = linear energy transfer (MeV•cm²/mg)
LET _{th} = linear energy transfer threshold (the
maximum LET value at which no effect
was observed at an effective fluence of
1x10 ⁷ particles/cm ² – in MeV•cm ² /mg)
< = SEE observed at lowest tested LET
> = no SEE observed at highest tested LET
σ = cross section (cm ² /device, unless specified
as cm²/bit)
σ_{maxm} = cross section at maximum measured
LET (cm ² /device, unless specified as
cm ² /bit)
ADC = analog to digital converter
BiCMOS = bipolar complementary metal oxide
semiconductor
BNL=Brookhaven National Laboratory Tandem
Van de Graaff
CDH=Northwestern Medicine Chicago Proton
Center
CMOS = complementary metal oxide
semiconductor
CMRR = common-mode rejection ratio
DAC=Digital to Analog Converter
DUT = device under test
ECC = error correcting code
H = heavy ion test
HUPTI=Hampton University Proton Therapy
Institute
I _D = drain current
IC = integrated circuit
ID# = identification number
I _{DS} = drain-source current
I _G = gate current
lout = output current
I _R = reverse leakage current
L = laser test
LBNL = Lawrence Berkeley National Laboratory
LDC = lot date code
LVDS=Low-Voltage Differential Signaling min = minimum
MGH=Mass General Francis H. Burr Proton
Therapy
MOSFET = metal-oxide-semiconductor field-
effect transistor
NAND = Negated AND or NOT AND
NRL = Naval Research Laboratory
PI = principal investigator
PIGS = post-irradiation gate stress
PSRR = power supply rejection ratio
REAG = radiation effects and analysis group
SBU = single-bit upset
Scripps = Scripps Proton Therapy Center
SEB = single event burnout
SEDR = single event dielectric rupture
SEE = single event dielectric rupture SEE = single event effect
SEFI = single-event functional interrupt
SEGR = single event gate rupture
SEL = single event gate rupture SEL = single event latchup
SET = single event transient
SET - Single event transfert

SEU = single event upset

SMU = source-measure unit

 t_{CC} = power supply voltage

_{DS} = drain-to-source voltage

GS = gate-to-source voltage

VNAND = vertical-NAND

 V_R = reverse bias voltage

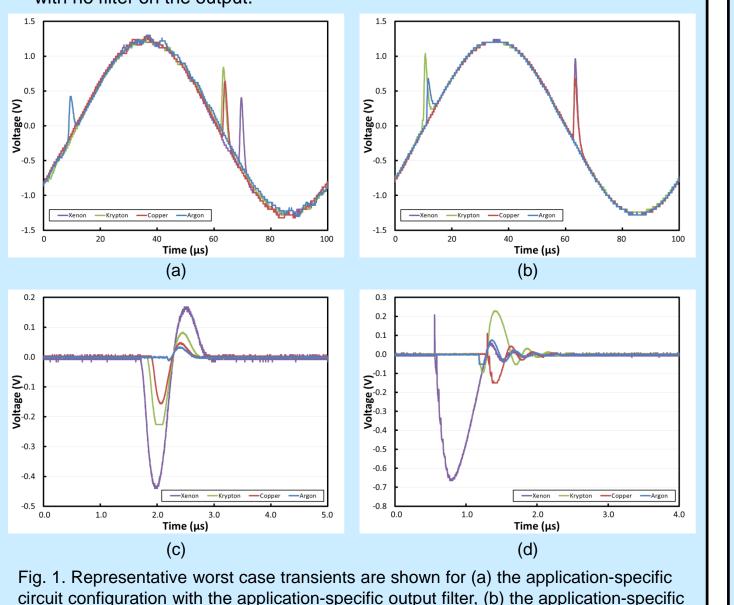
TAMU = Texas A&M University Cyclotron

DMOS = vertical double diffused MOSFET

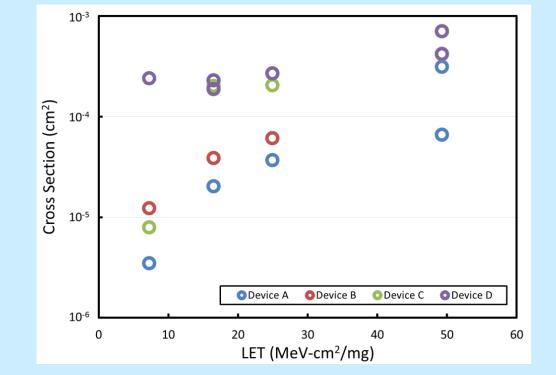
TRIUMF=Tri-University Meson Facility

Table VI: Summary of SEE Test Results

Part Number	Manufacturer	LDC or Wafer#, REAG ID#	Device Function	Technology	Particle: (Facility/Year/Month) P.I.	Test Results: LET in MeV•cm²/mg, σ in cm²/device, unless otherwise specified	Supply Voltage	Sample Size (Number Tested)
cessors: Broadwell 5 th Gen. Core™ i3-5005U	Intel	15-080	Processor	14nm Gen 5 CMOS and FinFET	P: (MGH; TRIUMF; HUPTI; Scripps) CS H: (TAMU15Aug, TAMU15Dec,	Testing to evaluate Proton facilities and development of test processes. Test results available via Duncan, et al., at this	1.05V, 3.3 V	10
Skylake 6 th Gen.Core™ i5-6600K	Intel	15-081	Processor	14nm Gen 6 CMOS and FinFET	P: (TRIUMF15Nov) CS	year's Data Workshop. Testing to evaluate Proton facilities and development of test processes. Test results available via Duncan, et al., at this year's Data Workshop.	3.3V, 5V, 12V	1
Skylake 6 th Gen.Core [™] i3-6100	Intel	15-081	Processor	14nm Gen 6 CMOS and FinFET	H: (TAMU15Dec) CS	Test results available via Duncan, et al., at this year's Data Workshop.	3.3V, 5V, 12V	1
Skylake 6 th Gen.Core [™] i3-6100T	Intel	15-081	Processor	14nm Gen 6 CMOS and FinFET	H: (TAMU16May) CS P: (Scripps16May) CS	Testing to evaluate Proton facilities and development of test processes. Test results available via Duncan, et al., at this year's Data Workshop.	3.3V, 5V, 12V	2
mory Device: MT29F128G08CBECBH6	Micron	201448, 14-088	Flash Memory	16 nm CMOS	H: (LBNL2015Aug; 15Dec) DC	SEU LET _{th} < 0.9 MeV·cm²/mg, SEU σ = 1.7x10 ⁻¹⁰ at LET of 58; SEFI: Part is vulnerable to SEFI in static biased and dynamic test modes. SEFI LET _{th} < 0.9; No device functional failure up to LET of 118. However observed block erase failure at LET of 58.	3.3V	2
BUY15CS23J-01 Engineering samples	Infineon	1440.60 14-076 G1317AB,	MOSFET	Super-junction	H: (TAMU2015Nov21) JML	Primary failure mode: SEGR. 2076-MeV Ta (LET=77): Pass 150 V _{DS} at 0 to -10 V _{GS} ; max pass/first fail V _{DS} 140/150V at -15 V _{GS} , 60/70V at -20 V _{GS} .	V _{GS} = 0V to - 20V in 5-V steps	5
DG403	Vishay International	15-018 1427,	Analog Switch	CMOS	H: (LBNL2015Apr01) MJC/Boutte H: (LBNL2015Mar31) MJC;	SEL LET _{th} > 84 Primary failure mode: SEGR.	+/-15V	6
2N6790	Rectifier	15-022	MOSFET	Power	(TAMU2015Apr11) MJC/Dye/MCC	1634-MeV Ag (LET=44): max pass/first fail -90V/-100V. 2954-MeV Au (LET=87): max pass/first fail VDS -40V/-50V. Primary failure mode: SEGR.	0 V _{GS}	2
2N6845	International Rectifier	1427, 15-021	MOSFET	Power	H: (TAMU2015Apr11) MJC/Dye/MCC	1634-MeV Ag (LET=44): max pass/first fail VDS -70V/-80V2954-MeV Au (LET=87): max pass/first fail VDS -40V/-50V.	0 V _{GS}	2
LM195	National Semiconductor	No LDC, 15-031 1242,	Power Transistor	Bipolar	H: (TAMU2015Apr11) MJC	SEB LET _{th} > 87 (2006-MeV Au)	35V	4
1N5554	Microsemi	13-058; and 1318, 14-059	Diode	Si	H: (NSRL 15Mar) MCC	No degradation observed at 500V reverse voltage when irradiated with 31.5 GeV Au. No failures observed at 50% of reverse voltage when irradiated	500V	62
DSS17-06CR	IXYS	No LDC, 15-084	Diode	Si	H: (LBNL2015Dec19) MCC	with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Degradation observed during beam run while biased at 75% of reverse voltage. Post-rad electrical parameter measurements were out of specification. Catastrophic failure was observed at 100% of reverse voltage	600 V	5
FST30100	Microsemi Fairchild	0715, 14-024 E13AA,	Diode	Si	H: (LBNL2015Aug18) MCC	No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). No failures observed at 100% of reverse voltage when irradiated	100 V	3
FYPF1545	Semiconductor Fairchild	15-050 E23AD,	Diode	Si	H: (LBNL2015June27) MCC	with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). No failures observed at 100% of reverse voltage when irradiated with 1233 meV Xe (LET = 58.8 meV-cm²/mg).	45 V	3
FYPF2045 FYPF2006	Semiconductor Fairchild	15-051 D50AB,	Diode Diode	Si Si	H: (LBNL2015June27) MCC H: (LBNL2015June27) MCC	with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). No failures observed at 100% of reverse voltage when irradiated	45 V 60 V	3
FYPF1010	Semiconductor Fairchild Semiconductor	15-052 D34AA, 15-053	Diode	Si	H: (LBNL2015June27) MCC H: (LBNL2015June27) MCC	with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). No failures observed at 100% of reverse voltage when irradiated	100 V	3
MBR2045	Semiconductor Diodes, Inc.	15-053 1339,	Diode	Si	H: (LBNL2015June27) MCC	with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Degradation observed during beam run while biased at 100% of reverse voltage, but all parameters remained within specification	45 V	3
		15-054			,	when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Degradation observed during beam run while biased at 100% of		
MBR2060	Diodes, Inc.	1339, 15-057	Diode	Si	H: (LBNL2015June27) MCC	reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg).	60 V	3
MBR20200	Diodes, Inc.	1348, 15-060	Diode	Si	H: (LBNL2015June27) MCC	No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Catastrophic failure was observed at 75% and 100% of reverse voltage.	200 V	4
MBR40250	On Semiconductor	No LDC, 15-085	Diode	Si	H: (LBNL2015Dec19) MCC	No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Catastrophic failure was observed at 75% and 100% of reverse voltage. Degradation observed during beam run while biased at 75% of	250 V	5
MBRF20100	Diodes, Inc.	1346, 15-058	Diode	Si	H: (LBNL2015Aug18) MCC	reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Catastrophic failures observed when biased at 100% of reverse voltage.	100 V	4
MBRF30100 LXA03T600	Diodes, Inc. Power Integrations	1336, 15-059 No LDC,	Diode Diode	Si Si	H: (LBNL2015June27) MCC H: (LBNL2015Aug18) MCC	No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Catastrophic failure was observed at 75% and 100% of reverse voltage. No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Catastrophic	100 V 600 V	11
		15-073 No LDC,				failure was observed at 75% and 100% of reverse voltage. No failures observed at 50% of reverse voltage when irradiated		
LXA20T600	Power Integrations	15-075 No LDC,	Diode	Si	H: (LBNL2015Aug18) MCC	with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Catastrophic failure was observed at 75% and 100% of reverse voltage. No failures observed at 100% of reverse voltage when irradiated	600 V	11
VS-APH3006-N3	Vishay	15-076 1515,	Diode	Si	H: (LBNL2015Aug18) MCC	with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). No failures observed at 100% of reverse voltage when irradiated	600 V	5
SBL8L40 SBL1040	Vishay Vishay	15-044 1412,	Diode Diode	Si Si	H: (LBNL2015Aug18) MCC H: (LBNL2015Aug18) MCC	with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). No failures observed at 100% of reverse voltage when irradiated	40 V 40 V	3
SBL1045	Diodes, Inc.	15-045 0924, 15-049	Diode	Si	H: (LBNL2015Aug18) MCC	with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg).	45 V	3
SBL3040 SBR20A300	Vishay Diodes, Inc.	1410, 15-046 No LDC, 15-086	Diode Diode	Si Si	H: (LBNL2015Aug18) MCC H: (LBNL2015Dec18) MCC	No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Catastrophic	40 V 300 V	3 5
SBR30300	Diodes, Inc.	No LDC, 15-087	Diode	Si	H: (LBNL2015Dec18) MCC	failure was observed at 75% and 100% of reverse voltage. No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg). Catastrophic	300 V	5
Devices: CPM2-1200-0025B	CREE	1327, 13-069; FM113-16,	MOSFET	SiC Gen 2 VDMOS	H: (LBNL2015Dec18) JML	failure was observed at 75% and 100% of reverse voltage. 996 MeV Xe (LET=65 in SiC): Immediate catastrophic SEB at $V_{DS} \le 600 \text{ V}$, threshold not identifiable. At lower V_{DS} , degradation of I_{G} and I_{D} with fluence increased with temperature. 361 MeV Ar (LET=11 in SiC): Latent gate damage 200V < $V_{DS} \le$	0 V _{GS}	11
CPM3-3300 Engineering samples	CREE	15-067 94311CJ12,	MOSFET	SiC Gen 3 VDMOS	H: (TAMU2015Jun5, LBNL2015Aug23)	300V; I _{DS} degradation with fluence 300V < V _{DS} ≤400V (note: max V _{DS} tested=500V). Contact PI for test results (data proprietary)	0 V _{GS}	6
Test chip	GE	15-040 WD04/ DH10	Diode	SiC IC	H: (TAMU2015Apr12; LBNL2015Dec18)	Contact PI for test results (data proprietary)	-100V	2
Engineering samples, various	GE	14-081 14-078,	Diodes	SiC discrete	JML H: (TAMU2015Apr12) JML	Contact PI for test results (data proprietary)	Various	11
Engineering samples Engineering samples	GE	14-080 15-041	MOSFET	SiC VDMOS	H:(TAMU2015Jun3, TAMU2015Nov21) JML	Contact PI for test results (data proprietary) Contact PI for test results (data proprietary)	0 V _G s	12
STPSC1006D	STMicroelectronics	,	Diode	SiC	H: (LBNL2015Aug23) JML	765-MeV Kr (LET=34 in SiC): Onset V_R for I_R degradation with fluence falls off faster with angle than simple cosine law. Onset	Various V _R and angles	4
Test chip	GE	15-038 WD04/ DH10, 14-079	Frequency Divider	SiC IC	H: (TAMU2015Apr12) MCC/JML	at normal incidence = 200V < V _R ≤ 225V. Contact PI for test results (data proprietary)	12V-20V	5
Test chip	GE	WD04/ DH10, 14-081	Ring Oscillator	SiC IC	H: (TAMU2015Apr12; LBNL2015Dec18) MCC/JML	Contact PI for test results (data proprietary)	5V-20V	1
Test chip	GE Ozark IC	WD04/ DH10 14-081 14-046	Op Amp	SiC IC	H: (TAMU2015Apr12;LBNL2015Dec18) MCC/JML H (LBNL2015Jun02) MCC	Contact PI for test results (data proprietary) Contact PI for test results (data proprietary)	20V 15V	2
Amps:	OZAIN IO		Logic Device		(LD14LE010001102) NIOC	The parts passed with supply voltages starting at +/-5V up to +/-	137	
OPA2107	Texas Instruments	1144, 15-005	Op Amp	Difet	H: (TAMU2015Apr11) MJC	15V at an LET of 53 MeV.cm²/mg. At an LET of 87.1 MeV.cm²/mg they passed from +/-5V to +/-13V.	Various	3
AD8038 LT2078	Analog Devices	JX676, 15-025 1180,	Op Amp	XFCB Bipolar	H: (TAMU2015Apr11) MJC	SEB/SEDR LET _{th} > 87 SEB/SEDR LET _{th} > 61.3	+/-15V +/-15V	3
OP470	Linear Technology Analog Devices	15-024 1419A, 15-032	Op Amp	Bipolar Bipolar	H: (TAMU2015Apr11) MJC H:(LBNL2015Jun02) MJC/MC	SEB/SEDR LE1th > 61.3 SEDR LETth < 49.3 MeV-cm²/mg. Normal incidence is worst case and SEDR observed at VDD = ±12 V under these conditions.	+/-15V ±6V to ±15 V	5
OP200	Analog Devices	9584 0206AA 0736A	Op Amp	Bipolar	P: (HUPTI2015Jul, CDH2015Sep) RLL	No SEDR seen for VS=14.3; >3E11 200-MeV p/cm ² @ HUPTI; >2E12 200-MeV p/cm ² @CDH	14.3	9
OP400	Analog Devices	0736A 0502B 0215B	Op Amp	Bipolar	P: (HUPTI2015Jul, CDH2015Sep) RLL	No SEDR seen for VS=14.3; >3E11 200-MeV p/cm ² @ HUPTI; >2E12 200-MeV p/cm ² @CDH	14.3	10
RT4G150-CB1657MSX449	Microsemi	1534;	FPGA	65nm CMOS	H: (TAMU2015Dec; LBNL2016Mar) MB	SEE LET _{th} > 5	1.5; 2.5; and	1 Rev E
XC7K325T Kintex7	Xilinx	15-083 1349; 14-001	FPGA	25nm CMOS	H: (TAMU2015Apr10; TAMU2015Aug12) MB L: (NRL2016) MB	H: SEU LET _{th} < 0.07 (configurable memory); 100ma current jumps were observed. L: Tested to evaluate different mitigation strategies.	3.3 V Varies w/data sheet	1 Rev (
er Devices: HM628128	Hitachi	9249, 15-082	1Mb SRAM	0.8um CMOS	P: (MGH15Dec; TRIUMF15Oct) TW	Experimental characterization of proton test facilities. Proton SBU σ ~1x10 ⁻¹³ cm ² /bit. MBU varies with data pattern.	5V	4
Magnum Test Vehicle	IBM (now Global Foundaries)	No LDC, 15-027	SRAM	45 nm SOI CMOS	P: (CDH15Mar; TRIUMF; Scripps; HUPTI) JP/MCC	Experimental characterization of proton test facilities. Proton SBU $\sigma \sim 5 \times 10^{-16}$ cm ² /bit. MBU $\sigma \sim 5 \times 10^{-16}$ cm ² /bit. SEFI: LET _{th} < 0.89, $\sigma_{maxm} = 3.93 \times 10^{-3}$ cm ² at LET = 68.1	0.6 to 1.2V	1
SPC5606B	NXP (Freescale)	1M03Y, 15-066	Automotive Microcontroller	90nm CMOS	H: (LBNL2015Aug22; LBNL2015Dec18) TW	SEL: LET _{th} = 6.09 Single-bit SRAM Error: LET _{th} < 0.89 Double-bit SRAM Error: LET _{th} = 1.78 Double-bit Flash Error: LET _{th} > 68.1 No catastrophic/unrecoverable device failures observed up to	5V	4
AD5328	Analog Devices	4456, 15-026	DAC	CMOS	H:(LBNL2015Apr) MJC/TW	maximum LET tested of 68.1 SEL 4 < LET _{th} < 6 at elevated temperature	5V	4
MAX9180	Maxim	1421, 15-030	LVDS	CMOS	H: (TAMU2015Apr11) MJC	SEL 40.7 <let<sub>th<43.6</let<sub>	3.3-3.6V	4
ADV212	Analog Devices	1216, 1220,	Video Codec	CMOS	L: (NRL2016Oct14) TW	Latch-ups observed. Tested to evaluate off-chip recovery	Various	1


Test Results and Discussion

As in our past workshop compendia of NASA Goddard Space Flight Center (GSFC) test results, each DUT has a detailed test report available online at http://radhome.gsfc.nasa.gov describing the test method, SEE conditions/parameters, test results, and graphs of data. This section contains summaries of testing performed on a selection of featured parts.

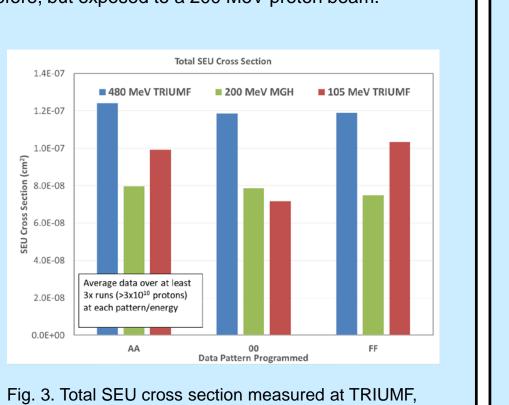

Analog Devices OP470 Operational Amplifier

The OP470 is a high-performance monolithic quad operational amplifier voltage below 0.4 mV and an offset drift under 2 μV/°C, guaranteed over the gain-bandwidth product of 6 MHz and a slew rate of 2 V/µs.

filter on the output. Finally, device D was also a unity gain voltage follower with no filter on the output

circuit configuration with the application-specific output filter, (b) the application-specific circuit configuration with no output filter, (c) a unity gain voltage follower with the application-specific output filter, and (d) a unity gain voltage follower with no output filter. Transients generated from argon are shown in blue, copper is shown in red, krypton in green, and xenon in purple.

Fig. 2. The cross-section versus LET plot for the four different OP470 circuit configurations tested.


Because other work had indicated SEDR has been observed in other Analog Device's parts from the same product lines, it was necessary to determine the conditions under which SEDR occurred in this part. Destructive SEEs were observed during this testing; however, none were observed at the application supply voltage of ±6 V for any ion tested. After determining the part was not susceptible to destructive SEEs at the application voltage with any ion tested, the supply voltage was incrementally increased by ±1 V and irradiated until SEDR was observed, or the particle fluence reached 1x10⁷ particles/cm². No destructive events were observed while irradiated at a 60° angle of incidence.

In addition to identifying the conditions under which the OP470 is susceptible to SEDR, we also captured transients for the four different circuit configurations. Figs. 10 a-d show the worst-case transients generated by the ions tested for each circuit configuration. Fig. 2 shows the SET cross section for each circuit configuration. The worst-case transients are approximately 1.5 µs wide and just under 1 V in amplitude.

Hitachi HM628128 1Mb SRAM The Hitachi HM628128LP-10 is a 1 Mbit (128k x 8 SRAM built on a 0.8µm CMOS process. The devices

tested have a date code of 9249. Both ground-test and in It was selected to be the test vehicle for a series of protor

Hospital's Proton Therapy Center (MGH). The device before, but exposed to a 200 MeV proton beam.

with data broken down by memory pattern and beam

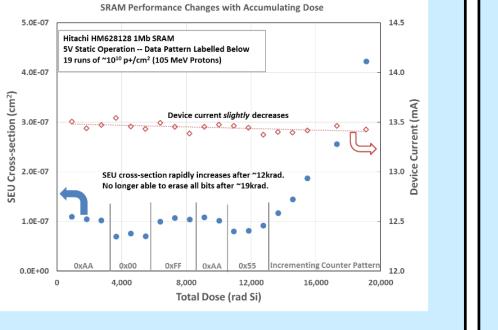


Fig. 4. Changes in SEU cross section (left axis) and device operating current (right axis) as a function of accumulated dose.

SEU cross-sectional data were obtained from both tests and plotted [Fig. 3]. Additionally, total ionizing dose plotted as a function of cumulative dose [Fig. 4] to verif the total dose limitations of this device. SEU rates bega to increase rapidly after approximately 14 krad (Si) proton irradiation regardless of energy tested. The data from TRIUMF, MGH, and previous

published data on this part will be utilized as a basel

variety of proton energies. It is expected that further da inconsistencies in proton energy vs upset rate suggested by the initial results of Fig. 4.

Intel Core™ i3-5005u "Broadwell" Mobile Processor; Core™ i5-6600K, i3-6100, i3-6100T "Skylake"Desktop

Prior to our TID testing at NSWC Crane, an invitation was extended

conducted heavy ion tests with Ne and Ar at TAMU.

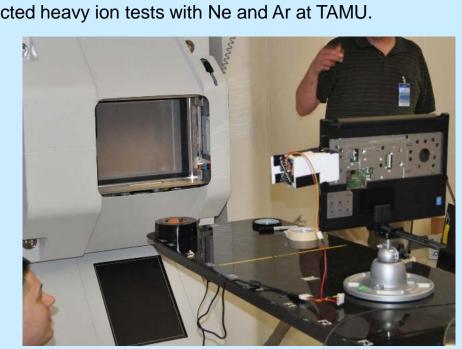


Fig. 5. Broadwell i3-5005u test setup at Scripps.

Fig. 6. Broadwell i3-5005u in gantry room at HUPTI

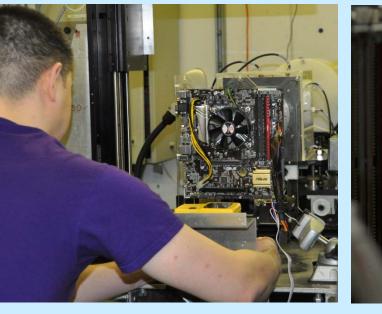


Fig. 8. Test operator finalizing Skylake i5-6600K test setup at TRIUMF facility.

With regard to our "Skylake" family processors, our selection of DUTs reflected market availability at the time of the facility visit: the 91W TDP Core™ i5-6600K (11/2015 TRIUMF), Fig. 8 shows the operator finalizing the test setup at TRIUMF, the 51W TDP Core™ i3-6100 (12/2015 TAMU), and the 35W TDP Core™ i3-6100T (5/2016 TAMU & SCRIPPS). The goal was to Fig. 7 shows the Skylake set-up for TAMU and Fig. 9 shows a close up of the

Fig. 9. Close up showing bored out heat

spreader and exposed, thinned die.

Data collected has been combined with NSWC independently collected test results. See A. R. Duncan, et al., for complete details of this work and

As we continue the proton facility study combined with our processors / SOTA technology evaluation, we hope to yield more information on how these parts behave under irradiation, and further refine how best to conduct tests on these complex devices. At the same time, with these parts being relatively inexpensive, they can continue to serve as a simple means to understand the inner workings of various test facilities and provide an infinite source of entertainment to the investigators.

Summary

devices. It is the authors' recommendation that on any suspect or commercial device.

Acknowledgment

Electronic Parts and Packaging Program Directorate Game Changing Technology The authors gratefully acknowledge members

of the Radiation Effects and Analysis Group wh

radiation effects testing.

Special thanks go to Stephen P. Buchner and Dale McMorrow. Naval Research Laboratory for their excellent support of the laser testing

Cree CPM2-1200-0025B SiC VDMOS

Fig. 7. Skylake i3-6100 test setup at TAMU.

Heavy-ion SEE tests were conducted at the Lawrence Berkeley National Laboratory (LBNL) in vacuum with 10 MeV/u xenon or argon. The bare die were assembled in TO-3 headers without lids, and a controlled 1-mil parylene-C coating was then deposited to prevent the bond wires from arcing under high voltage. Beam energy at the surface of the die after passing through the coating was determined using the SRIM code to be 966 MeV for xenon, with an LET in SiC of 65 MeV-cm²/mg and a penetration range of 45 mm; for argon, energy = 361 MeV, LET = 11 MeV-cm²/mg, and range = 77 mm. Prior to and after each irradiation, the gate-source leakage current (I_{GSS}) and drain-source leakage current (I_{DSS}) and/or the breakdown voltage were measured. During irradiation, V_{GS} was held at 0 V, a positive V_{DS} was applied, and the gate and drain currents were continuously measured and recorded via Keithley 2635A or 2400, and

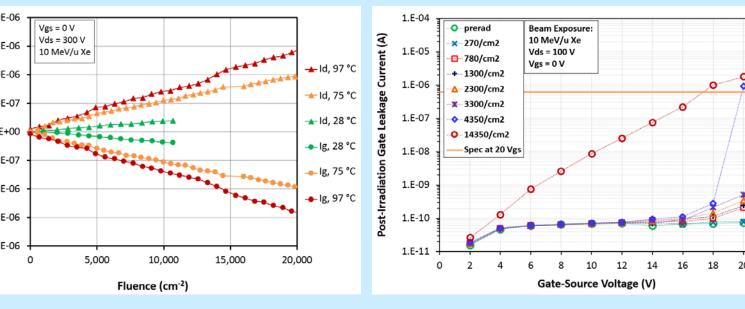
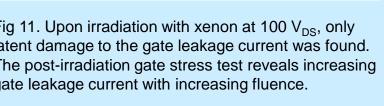
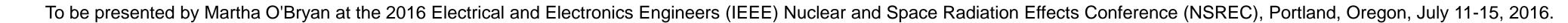



Fig. 10. Degradation of both drain and gate currents


Fig 11. Upon irradiation with xenon at 100 V_{DS}, only during irradiation with xenon while biased at 0 V_{GS} and latent damage to the gate leakage current was found. 300 V_{DS} is very linear with ion fluence. The degradation The post-irradiation gate stress test reveals increasing rate during irradiation increases with increasing case gate leakage current with increasing fluence.

Gate-Source Voltage (V)

Immediate catastrophic failure of the device occurred upon xenon beam exposure at 600 V_{DS}. At lower voltage, permanent degradation of the drain and/or gate leakage current occurred linearly as a function of fluence. The slope of this degradation increased with increasing temperature, as can be seen in Fig. 10 where the change in leakage current during the beam run as a function of fluence is shown for a single part irradiated at 300 V with xenon at 28 °C, 75 °C, and 97 °C case temperature. In silicon power MOSFETs, SEB susceptibility during radiation testing is often reduced by elevated temperature due to the decreased charge mobility. SEB in silicon power MOSFETs typically involves the turn-on of the parasitic bipolar junction transistor. The behavior of silicon carbide power MOSFETs differs: in addition to immediate catastrophic failure, there is a voltage range at which permanent substantial degradation of leakage current occurs that worsens with increasing temperature. It is most likely that the mechanisms in SiC MOSFETs are direct and do not involve the parasitic bipolar transistor.

In addition to burnout in the SiC material, the MOSFETs are susceptible to latent damage in the gate oxide. As shown in Fig. 11 for the CPM2-1200-0025B irradiated under 100-V drainsource bias with xenon, this degradation is fluence-dependent, such that no single ion causes the part to go out of specification under these conditions. Irradiation with the much lighter ion, argon, at 100 V_{DS} up to a fluence of 5x10⁵ cm⁻² resulted in no measurable change in I_{GSS}.

Latch-ups observed. Tested to evaluate off-chip recovery

Various 1