

# Estimates of residential floor vibration induced by sonic booms

Jacob Klos

Acoustical Society of America May 23, 2016

Image Source: http://www.nasa.gov/centers/armstrong/features/shock\_and\_awesome.html

#### **Motivation and Outline**

- Large area exposed
- Study people's subjective reaction to anticipated indoor exposure
- Need estimates of vibration exposure in residential homes
- Brief review of modeling approach
- Review a numerical design of experiment
- Illustrate histograms used to inform a psychoacoustic test
- Discuss comparison to experiments







- Define likelihood of experiencing a particular level
- Relevant experimental data is limited
- Model response to aircraft that don't yet exist
- Consider response quantities that are not in existing sonic boom literature

#### **Modeling Approach**



- Developed at Virginia Tech (PI: Ricardo Burdisso)
- Exterior loading: edge diffraction toolbox<sup>1</sup> (Peter Svensson)
- Structural response and interior acoustics: transient modal interaction model<sup>2</sup>
  - Formulated in terms of uncoupled Eigen solutions
  - Coupled indoor vibro-acoustic response
  - Structural envelope: Eigen solution of an in vacuo orthotropic plate<sup>3</sup> finite element model
  - Output is time domain interior pressure and/or structural vibration

- <sup>1</sup> Edge Diffraction Toolbox: <u>http://www.iet.ntnu.no/~svensson/software/</u>
- <sup>2</sup> Remillieux, et. al., Transmission of sonic booms into a rectangular room with a plaster–wood wall using a modal – interaction model, J. Sound and Vibration, 327 (2009) pp 529–556.
- <sup>3</sup> Harne, et. al., Structural-acoustic aspects in the modeling of sandwich structures and computation of equivalent elasticity parameters, Thin-Walled Structures, 56 (2012) pp 1-8.

#### **Numerical Design of Experiment**



- Ten factors were analyzed
- An ensemble of 5832 houses
  - Houses had a wood framed floor with crawl space
  - Only considered limp siding material (e.g. no brick or stucco in the present analysis)
  - Windows were closed
  - Doors were not included in the structural model

#### **Factors Influencing Exterior Loading**



- Incident waveform: aircraft configurations
   7 low boom aircraft concepts
   2 conventional military aircraft
- Source incidence azimuthal angle 12 equally spaced angles (30 degree increment)
- Source incidence elevation angle 30 degrees
   45 degrees

### **Factors Influencing Physical Properties**

- NASA
- Different floor plans Four generic floor plans Edwards ranch Edwards two story
  Exterior wall construction
  Floor joist depth
  Window construction
  Structural damping
  Acoustic damping
  Structural stiffness to mass ratio
- Full factorial analysis:
  - 1,259,712 house-source combinations
  - Each with about 100 virtual accelerometers on the floor
  - Analysis took 2 weeks to complete



#### **Example Vibration Distributions**



9

- Fixed outdoor loudness level of 80 dB [perceived level]
- Binned the peak floor acceleration
- Different low boom aircraft concepts



## **W<sub>k</sub> Weighted Peak Acceleration**



- ISO 2631 parts 1 and 2 whole body vibration
- $W_k$ -weighting filter (Psycho-physical metric)



#### Edwards (1966) Test Data



- USAF and NASA study in 1966 on two purpose built homes
  - Homes had wood framed floors with crawl spaces
  - N-wave excitations from a B-58 and a F-104 military aircraft
- Analysis by Sutherland and Czech (NASA CR #189584, 1992)



Transducer # 311 (Wall Mounted Accel)

Slopes for floor accels [g/psf]

|                       |                | Aircraft Type |       |
|-----------------------|----------------|---------------|-------|
|                       |                | B-58          | F-104 |
| Ranch<br>House        | Floor Accel #1 | 0.069         | 0.090 |
|                       | Floor Accel #2 | 0.043         | 0.062 |
|                       | Floor Accel #3 | 0.052         | 0.058 |
| Two<br>Story<br>House | Floor Accel #1 | 0.048         | 0.049 |
|                       | Floor Accel #2 | 0.041         | 0.060 |

#### **Predicted Vs. Measured Floor Vibration**

Modeled response to a 2 psf N-wave from two military aircraft



**Edwards Ranch House** 





- Summary
- Estimated vibration exposure in homes for a variety of aircraft
  - Low boom exposure ranges from imperceptible to perceptible
  - Need to study how subjective annoyance varies with anticipated range in levels



- Favorable comparison of predictions to test for conventional military aircraft
- Floor vibration is a conservative exposure estimate

# **Backup Slides**

#### Edwards Test Houses (1966, Ranch House)





# Edwards Test Houses (1966, Two Story House)



#### **Experimental Validation: Interior Pressure**



 Comparisons between measurements in the IER and predictions using VA Tech code were made

- Microphone time histories and spectra were compared
- Typical microphone response is shown to the right
- Loudness level inside the IER

|       | Perceived Level (dB) |           |  |
|-------|----------------------|-----------|--|
| Mic # | Measured             | Predicted |  |
| 1     | 73.8                 | 74.2      |  |
| 2     | 75.3                 | 76.1      |  |
| 3     | 75.9                 | 75.7      |  |
| 4     | 73.5                 | 72.1      |  |
| 5     | 73.0                 | 73.7      |  |

 Good agreement between experiment and VARS was obtained



Validation of Interior Pressure Response

#### Measured vs. predicted structural mode shapes (pink noise excitation, low frequency)





#### **Edge Diffraction vs. Boundary Element**



- Edge diffraction toolbox
  - Written by Peter Svensson at the Norwegian University of Science and Technology
  - Incorporated into VARS to predict exterior loading
- Compared frequency domain BEM to edge diffraction toolbox predictions
- Spatial distribution of sound pressure level at 60 Hz is shown, incident side
- Good agreement comparing all three methods



Nominal level on the ground in absence of the building is 94 dB (light green)

# Edge Diffraction vs. Boundary Element (60 Hz)

- Spatial distribution of sound pressure level at 60 Hz is shown
- Shadow side of the building
- Nominal level on the ground in absence of the building is 94 dB (light green)
- Good agreement in level comparing all three methods
- VARS lack some fine detail due to limited diffraction order (2<sup>nd</sup> order was used)

