

Invited Plenary Talk Spring Conference of the Korean Space Science Society (KSSS) Gangneung-si, Gangwon-do, Republic of Korea

SPACE RADIATION RESEARCH AT NASA

John Norbury

NASA Langley Research Center, Hampton, Virginia, USA

Friday April 29, 2016

- **2** RADIATION & DOSE
- **3** NUCLEAR & PARTICLE PHYSICS & TRANSPORT
- MOON, MARS, JUPITER, SATURN

5 CONCLUSIONS

3 SOURCES OF SPACE RADIATION

https://oltaris.larc.nasa.gov

SPE=Solar Particle Event GCR = Galactic Cosmic Rays

Geo = Geomagnetically trapped particles

GCR COMPOSITION, SPECTRUM, ORIGIN

GCR HIGH ENERGY < PEV

Space radiation problem

GCR (primary) composition

- 98% nuclei, 2% *e*⁺*e*⁻
- Nuclear component: 87% Hydrogen 12% Helium 1% heavy nuclei

GCR origin

 Emitted in stellar wind & flares & accelerated by supernova shock waves (within our Galaxy)

Simpson, Ann. Rev. Nucl. Part. Sci. vol.33, p.323, 1983

GCR HIGH ENERGY < PEV

http://imagine.gsfc.nasa.gov/Images/science/abund2.gif

APPLIED NUCLEAR PHYSICS RESEARCH

Relative contribution in fluence, dose and dose equivalent of different elements in the GCR spectrum. Calculation is an average over 1 year in solar minimum behind 5 g/cm² Al shielding. Durante & Cucinotta, Nat. Rev. Canc. vol.8, p.465, 2008

SOLAR PARTICLES

JOHN NORBURY (NASA LANGLEY)

SPACE RADIATION RESEARCH AT NASA

FRIDAY APRIL 29, 2016 8 / 46

SOLAR PARTICLES 11 YEAR CYCLE - 2016 NEAR MAXIMUM!

JOHN NORBURY (NASA LANGLEY)

GEOMAGNETICALLY TRAPPED PARTICLES

Inner belt: 0 - 3 R_E = 18,000 km - mainly p

- Starts about 3,000 km
- But SAA dips down to 400 km
- Outer belt: $3 12 R_E = 36,000 \text{ km} (e,p) \text{mainly e}$ (LEO: 200 - 500 km GEO: 22,000 miles = 35,000 km)

Wikipedia, 2014

http://science1.nasa.gov/science-news/science-at-nasa/2001

RADIATION & DOSE

Unit of absorbed dose: 1 Gray == 1 J/kg

Radiation quality factor QSievert = Gray $\times Q$

http://www.nasa.gov/centers/marshall/multimedia/photos/2003/photos03-183.html

ICRP estimate: 5% per Gy 1 in 20,000 risk of fatal cancer per 1 mSv dose (lifetime)

RADIATION & DOSE

	Dose Equiv. (mSv)
Chest x-ray	0.1
USA annual background	4
Public annual limit (above background)	1
International Airline crews	4
Radiation worker annual limit	50
No observed effects (Abomb, instant)	200
Death (instantaneous dose)	3,000
ISS (with shield) annual	150
Astronaut career limit effective dose*	470
Mars (3 year, incl. surface) annual	1,000
Large solar flare (free space)	10,000

ICRP cancer risk estimate: 5% per Gy ~ 5% per Sv (for Q=1) 1 in 20,000 risk of fatal cancer per 1mSv dose (lifetime) * 30 year old female, 1 year mission (50 yr m/f ~ 1,000 mSv)

AIRCRAFT

http://www.scienceinschool.org/2010/issue14/cloud/maltese

AIRCRAFT

Bancroft et al., Phys. Ed. vol.49, p.164, 2014

http://www.scienceinschool.org/2010/issue14/cloud/maltese

Domestic crews 1 - 2 mSv /yr

International crews < 4 mSv / yr

 Pregnant woman < 5 mSv (to fetus per pregnancy)

AIRCRAFT - WHY ALL THE CONCERN NOW?

- NCRP & ICRP have lowered radiation worker exposure
 50 mSv / yr to 20 mSv / yr
- Air crews most highly exposed of any occupation group
- FAA criticized for not paying enough attention
- Many more polar flights
- Future High Speed Civil Transport (HSCT) radiation levels
 - 3 times higher than for crews of subsonic transport
- Only solution available now:
 - reduce flight hours
- NAIRAS Mertens (Langley)

ELECTRONICS

Computers

- Junction density increasing
- Switching energy decreasing

http://holbert.faculty.asu.edu/eee560/see.html

Need for predicting Single Event Upsets (SEU)

- satellite electronics
- aircraft electronics (civilian & military)

Shuttle - several hundred SEU / mission

ELECTRONICS - DEEP SPACE

- Electronics on Spirit, Opportunity, Curiosity etc. are radiation hardened
- Shielding very important for Jupiter, Saturn

http://mars.jpl.nasa.gov/msl/multimedia/images/?imageid=3504

Credit: NASA/JPL/Space Science Institute http://photojournal.jpl.nasa.gov/catalog/PIA04866

SPACE RADIATION RESEARCH AT NASA

FRIDAY APRIL 29, 2016 17 / 46

These are the doses received

- How were results obtained?
- How to design spacecraft & aircraft shields so dose is minimal?

Need

- Accurate atomic, nuclear, particle physics theory
- Accurate transport theory
- Biological models

18/46

TRANSPORT

Solve Boltzmann transport eqn (HZETRN)

Deterministic, not Monte Carlo

- Want quick answers
- Real time dose as function of position & time
- Both transport & nuclear physics must run fast
- $\bullet \ \to \mbox{Applied}$ nuclear physics

Wilson et al., NASA-RP 1257, 1991

SPACE RADIATION RESEARCH AT NASA

http://www.wikidoc.org/index.php/lonizing radiation

JOHN NORBURY (NASA LANGLEY)

TRANSPORT

Clowdsley et al., AIAA, 2006

TRANSPORT

Left: Primary GCR spectra at Mars for 1977 solar minimum Kim et al., NASA TP 208724, 1998 Right: Martian surface environment due to GCR Clowdsley et al., AIAA, 2006

TRANSPORT - MATERIALS COMPARED TO ALUMINUM

Dose Equivalent as a function of depth for various materials

Wilson et al., Materials & Design vol.22, p.541, 2001

JOHN NORBURY (NASA LANGLEY)

From radiation point of view, safest place is inside liquid hydrogen fuel tank!

Major result

- Low Z materials required for weight reduction necessary for future High Speed Civil Transport (HSCT) and for future spacecraft are *also* the best radiation protection materials
- Thank goodness!

Short duration

Solar particle events

Long duration

- Solar particle events
- Galactic cosmic rays

MOON

Lunar regolith composition

Material	Mass percentage
SiO ₂	52.6%
FeO	19.8 %
AI_2O_3	17.6 %
MgO	10.0 %

MOON

http://fti.neep.wisc.edu/neep602/lecture12.html

JOHN NORBURY (NASA LANGLEY)

MOON

Attenuation of dose equivalent due to 1977 solar minimum GCR

Simonsen et al., NASA Conference Publication 3360, 1997

MARS

	Earth	Mars
Atmospheric thickness (g/cm ²)	1000	20
Magnetic field (Gauss)	1	0

http://www-k12.atmos.washington.edu/k12/resources/

Chemical composition of Martian atmosphere

Component	Percentage (%)
CO ₂	95.32
N ₂	02.70
Ar	01.60
O ₂	00.13
CO	00.08

De Angelis et al., Rad. Meas. vol.41, p.1097, 2006

29/46

Chemical composition of Martian surface		
Component	Percentage (%)	
SiO ₂	44.2	
Fe ₂ O ₃	16.8	
Al_2O_3	08.8	
CaO	06.6	
MgO	06.2	
SO ₃	05.5	
Na ₂ O	02.5	
TiO ₂	01.0	

1.1.1 \sim

De Angelis et al., Rad. Meas. vol.41, p.1097, 2006

MARS

Model prediction of dose equivalent from GCR. Calculations are shown at average skin depth near solar maximum. Cucinotta, Rad. Res. vol.43, p.S35, 2002

JOHN NORBURY (NASA LANGLEY)

- Curiosity MSL RAD Zeitlin et al. Science vol. 340, p.1080, 2013
- Mars transit inside vehicle: 1.84 \pm 0.33 mSv / day
- \Rightarrow MSL (one way) 253 days gives 466 mSv
- \Rightarrow 331 mSv for 180 day cruise DRM
- \Rightarrow 662 mSv return trip
- Plus surface exposure 200 mSv ?
- Approaching and exceeding limits

MARS

MSL-RAD= Mars Science Laboratory Radiation Assessment Detector Kerr, Science vol.340, p.1031, 2013

JOHN NORBURY (NASA LANGLEY)

Intense radiation

- On Jupiter moon Io humans could not survive for more than a few hours
- Callisto

L1 TO CALLISTO SURFACE OPS (30 DAYS) & RETURN

Wilson et al., Adv. Space Res. vol.34, p.1281, 2004

SATURN

http://www.universetoday.com/15381/radiation-on-saturn/

http://www.nasa.gov/mission_pages/cassini/multimedia/pia06421.html

JOHN NORBURY (NASA LANGLEY) SPACE RADIATION RESEARCH AT NASA

- Carcinogenesis
 - Earlier appearance and more aggressive tumors not seen with controls, gamma-rays or proton induced tumors
 - Persistent oxidative damage and inflammatory pathway responses
 - New genomics data showing distinct gene expression profiles in HZE versus γ -ray or x-ray irradiated cell models
- Acute Radiation Syndrome due to Solar Particle Events
 - Research addresses dose threshold, dose-rate effects with countermeasure evaluation
 - Future work to understand impact of possible high skin dose and microgravity on immune system and blood forming organs

HEALTH EFFECTS ON HUMAN BODY

- Acute or Late Central Nervous System (CNS) Effects
 - Concern for CNS risks originated with the prediction of the light flash phenomenon from single high-Z high-energy nuclei traversals of the retina; this phenomenon was confirmed by the Apollo astronauts
 - Major uncertainty how to extrapolate results from animals to humans
- Degenerative Tissue or other health effects
 - Occupational radiation exposure from the space environment may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, & cataracts
 - Mechanisms & magnitude of influence of radiation leading to these diseases are not well characterized

NASA SPACE RADIATION LABORATORY

- Brookhaven National Lab on Long Island
- protons: 4 GeV
- protons Fe: 50 MeV/n 1.5 GeV/n
- up to Au: 165 MeV/n

http://science.energy.gov/np/benefits-of-np/applications-of-nuclear-science/archives/nasa-space-radiation-laboratory-nsrl/ http://spaceref.com/missions-and-programs/nasa/nasa-fiso-presentation-an-overview-of-the-nasa-space-radiation-laboratory.html

JOHN NORBURY (NASA LANGLEY)

SPACE RADIATION RESEARCH AT NASA

FRIDAY APRIL 29, 2016 39 / 46

NEW DEVELOPMENTS - PION CONTRIBUTION TO DOSE

Norman, Blattnig, De Angelis, Badavi, Norbury: Adv. Space Res. 50, 146, 2012; Aghara, Blattnig, Norbury, Singleterry: Nucl. Inst. Meth. B 267, 1115, 2009; Slaba et al., NASA TP-2013-217983; Adv. Space Res. 52, 62, 2013;

Pions can contribute almost 50% to dose

NEW DEVELOPMENTS - NEUTRONS & LIGHT IONS

JOHN NORBURY (NASA LANGLEY)

SPACE RADIATION RESEARCH AT NASA

FRIDAY APRIL 29, 2016

NEW DEVELOPMENTS - GCR SIMULATION

Two approaches to Galactic Cosmic Ray (GCR) simulation:

NEW DEVELOPMENTS - MINIMUM DOSE EQUIVALENT VS. DEPTH

- Human presence throughout solar system in 21 century
 - International endeavour
 - New frontier many economic rewards reaped by participants
- Korea Institute of Radiological and Medical Sciences (KIRAMS)
 - Expertise in proton and heavy ion therapy and radiological sciences
 - Highly relevant to space radiation
- Space Radiation
 - Major uncertainties associated with low dose rate
 - KIRAMS contribution?

- Human exploration of solar system
- Radiation protection is a major issue
- Fundamental studies in physics and radiobiology still needed
- Republic of Korea could make major contributions

THE END

john.w.norbury@nasa.gov