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ABSTRACT 

For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 

3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, 

Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander 

to that safe site on the hazard field.  The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and 

Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like 

descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, 

and safe sites 400m down-range.  The ALHAT project developed a system capable of enabling safe, precise crewed or 

robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions.  The Flash Lidar is a 

second generation, compact, real-time, air-cooled instrument.  Based upon extensive on-ground characterization at flight 

ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range 

precision and a range accuracy better than 35 cm, both at 1-σ.  The Flash Lidar identified landing hazards as small as 30 

cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it 

was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created 

during launch and transported down-range by wind. 

Keywords:  3-D Imaging, Laser RADAR, ALHAT, Asteroid, Flash Lidar, Lunar Landing, Mars, Morpheus, Precision 

Navigation, Safe Landing 

1. INTRODUCTION 

Landing mission concepts being developed for the exploration of planetary bodies increasingly require precision 

landings on sites of high scientific value making onboard, real-time terrain hazard detection and avoidance capabilities a 

necessity. Future human exploration missions will similarly require precision landing with increased levels of safety over 

those performed in the Apollo program if they are to become more commonplace.  Despite the successes of the Apollo 

program, which was constrained to land under favorable lighting conditions at sites with no significant terrain 

challenges, two of the six missions experienced near disaster during the landing phase with all six landings described as 

being perilous.1 As an example, Figure 1 shows that Apollo 15 landed partially in a crater which resulted in a crumpled 

main engine bell and a vehicle resting attitude near the safe limit.  Landing hazards have affected recent Mars missions 

requiring them to land far from the sites of primary scientific interest for fear of terrain, requiring the rovers to undertake 

months- or years-long drives before being able to begin the key science investigations. 
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Figure 1. Apollo 15 landed partially in a crater which crumpled its main engine nozzle and left the vehicle in a resting attitude near its 

safe limit.1  

 The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project, led by 

NASA Johnson Space Center, was established by NASA to develop and demonstrate a guidance, navigation, and control 

(GN&C) and sensing system for future planetary landing missions capable of terrain hazard avoidance (see Figure 2) and 

precision landing under any lighting conditions anywhere on the body.2  The ALHAT system is to enable the safe, 

precise landing for both crewed and autonomous landers.  To meet the requirements of providing global access to a 

planetary body (moon, Mars, asteroid, etc.) under any lighting conditions, ALHAT is pursuing active Lidar sensor 

technology development and maturation to implement the following sensor functions:  altimetry, velocimetry, Terrain 

Relative Navigation (TRN), Hazard Detection and Avoidance (HDA) and Hazard Relative Navigation (HRN).  The 

Flash Lidar is being considered for performing all of the required sensor functions with the exception of velocimetry for 

which a Navigation Doppler Lidar (NDL) is being developed.3,4  The ability of the NDL to provide velocity data with a 

precision better than 0.2 cm/sec is highly attractive for precision landing.  Additionally, the NDL provides high 

resolution altitude and ground-relative attitude data that may further improve precision navigation to the identified 

landing site.  The Laser Altimeter (LA) provides independent altitude data over a large operational altitude range of 20 

km to 100 m. All three laser sensors have a planned nominal update rate of 30 Hz.  The functions and operational range 

goals of each of the three ALHAT Lidar sensors have been previously reported.5 

 

 
 

Figure 2.  Future planetary landing missions (moon shown here) are considering scientifically interesting sites which happen to be 

near craters and rough terrain. 

The Flash Lidar produces three-dimensional (3-D) images of surfaces and hazards at video rates and, as such, it is 

being evaluated for use as the primary landing system sensor.5 An imaging Flash Lidar system records a 3-D image of a 

scene by converting intensity versus time of flight of short laser pulses into intensity versus distance along the line-of-
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sight (LOS) for each spatially resolved area within a two-dimensional (2-D) image. In older, more conventional imaging 

lidar systems, each 2-D pixel is recorded with a separate laser pulse.  Thus many laser pulses are required to record large, 

multi-pixel images.  A Flash Lidar system records full 3-D images with a single laser pulse, permitting higher data rates 

and freezing-out movement within the scene and motion of the transmitter/receiver platform.  The need for high speed 

raster scanners to sequentially address image pixels is also eliminated. The receiver is much like the familiar digital 

camera, but with “smart pixels” that are capable of recording the required sequential temporal information.  The sensor’s 

desired range precision is 5cm at 1σ and its desired spatial precision also known as its Ground Sample Distance (GSD) is 

10 cm at a slant range of 750m.  The correlation between desired range and spatial precision and its ability to resolve 

actual landing hazards as small as 40cm has been previously reported.6  The range precision is the statistical agreement 

of each of the Flash Lidar’s 16,384 pixels on the range to an effectively flat target (all should ideally report the same 

range).  GSD is the ground footprint of one pixel on a target at normal incidence. The GSD and range precision levels 

required are intuitively clear since measurement precision must generally be several times better than the minimum 

desired quantity to be measured (which, in the present case, is an image range variation which points to the presence of a 

hazard) especially given that the hazard detection is accomplished autonomously without the aid of human interpretation. 

 

Each of the three ALHAT sensors play a role in the ALHAT operational concept as shown in Figure 3 and previously 

reported.5  The POST-2 simulation was utilized extensively to optimize the ALHAT GN&C architecture, sensor 

algorithms, and sensor hardware.  Data from each of the three sensors is ultimately fed into a navigation filter to enhance 

the real-time knowledge of the vehicle navigation state (which can be in error by hundreds of meters due to Inertial 

Measurement Unit drift during travel time from Earth) relative to the ground to enable precise navigation to and landing 

on the optimal safe site nearest to the originally intended mission landing site.  The Flash Lidar executes its HDA and 

HRN functions as the sensor portion of the ALHAT Jet Propulsion Laboratory (JPL) Hazard Detection System (HDS).7  The 

HDA/HRN functions require detection of rocks and surface features greater than 40 cm in height, detection of slopes 

greater than 50 over the diagonal of the footprint of the landing vehicle, and determination of landmark position to better 

than one meter relative to the specified landing location.  The HDA concept employed in the present field test campaign 

involves scanning the landing site with the largest Field-of-View (FOV) which will still meet the spatial resolution goals 

and stitching the images together in a mosaic to create a 3-D DEM of the landing site in near-real-time.  The HRN 

concept employed in the present field test campaign included the use of subsequent Flash Lidar images after the initial 

DEM was created in order to track and navigate relative to a feature (typically another hazard and hence the name HRN) 

near the safe site by identifying it on the DEM and inferring vehicle state based upon the pose difference between the 

initial DEM and the present images of the hazard as the vehicle moves and the hazard changes perspective.  The HRN 

phase continues to nominally 100m where the landing dust cloud can become a factor in obscuring the ground. 
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Figure 3.  ALHAT concept of operations. 

 

The three lidar sensor systems have undergone a series of development and five field test cycles over the eight year 

lifecycle of the ALHAT project.8  Initial results of the culminating campaign of the project, Field Test 6 (FT6), have recently 

been reported.8,9  The present report will provide greater detail on the Flash Lidar results.  With the demonstration in a relevant 

environment during FT6, the ALHAT system reached its TRL 6 goal.  For FT6, the ALHAT system was integrated to the 

Morpheus rocket-propelled, free-flying test bed and flown on a lunar-like approach trajectory to landing on the same 

lunar-like hazard field at KSC that was used in the FT5 helicopter testing.  FT6 marked the first time that the ALHAT 

system was used in a closed-loop fashion to scan a lunar-like hazard field, identify a safe landing site, and autonomously 

help to guide a vehicle to a safe landing on the hazard field.  The campaign consisted of three daytime open-loop flights, 

one daytime closed-loop flight, and one nighttime closed-loop flight all following the same trajectory which peaked in 

altitude at 250m at a slant range to the hazard field of approximately 500m and moving downrange from the launch site 

to the hazard field approximately 400m. The flights were monitored from the Morpheus Mission Control Center 

(MMCC) with telemetry data from the sensors displayed at the ALHAT console.  The Flash Lidar executed its HDA 

objective by generating 3-D range images in real-time at a level of precision which enabled hazards as small as 30 cm to 

be identified from the maximum slant range provided by Morpheus.  The HDS then stitched together a mosaic of the 1° 

FOV Flash Lidar images to build a 3-D DEM of the hazard field in near-real-time and successfully identify all five safe 

sites amongst the hazardous rocks, craters, and slopes and passed the preferred safe site on to the Morpheus GN&C 

system.  The Flash Lidar executed its HRN function following HDA and the HDS fed the position updates into the 

ALHAT navigation filter for precision guidance of Morpheus over portions of its trajectory to the safe site.  The NDL 

provided high-fidelity velocity updates to the ALHAT navigation filter over portions of the trajectory for precision 

guidance to the selected safe site.  The Laser Altimeter fed slant range data to the ALHAT navigation filter for precision 

guidance to the selected safe site.  Each of the three sensors experienced minor anomalies due to air heated by the rocket 

plume.  In the end, the ALHAT system reached its TRL 6 goal through successful demonstration in a relevant 

environment. 

 

2. FLASH LIDAR SYSTEM CONFIGURATION 

The 3-D imaging Flash Lidar built by NASA-Langley (LaRC) is a second generation (Gen 2.2), compact, real-time, 

air-cooled, autonomous, 20 Hz time-of-flight sensor system based on 3-D imaging IR camera technology developed by 

Advanced Scientific Concepts (ASC).10 The Flash Lidar sensor system, with specifications delineated in Table 1, 

consists of two boxes as shown in Figure 4: the Flash Lidar Sensor Head (FLSH) and the Flash Lidar Electronics Box 
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(LEB).  A full series of thermal and vibration environmental testing was accomplished based on the expected Morpheus 

environments.  The FLSH integrates a 1.064 µm 50 mJ class IV Neodymium: Yttrium Aluminum Garnet (Nd:YAG) 

Fibertek pulsed laser (8 ns Full-Width-Half-Max or FWHM pulse width) operating at 20 Hz, 1° FOV 100mm f/7.3 

receiver optics, 1° divergence transmitter optics, and a Indium Gallium Arsenide-Avalanche Photodiode (InGaAs-APD) 

detector hybridized  to a Read-Out Integrated Circuit (ROIC) which together constitute the 128 pixel by 128 pixel focal 

plane array (FPA) residing in an ASC Tiger Eye camera. Tiger Eye serial number 1004 with a fresh FPA of appropriate 

sensitivity and nearly devoid of dead pixels (< 1.1% of its total pixel count) was utilized for the Morpheus testing as 

opposed to the equivalent sensitivity Tiger Eye 1005 camera and FPA used in the previous UH-1H testing of 2012 (FT5) 

which had accumulated a dead pixel count of 7.1% due to humidity exposure to its unsealed FPA (unsealed since it was 

still experimental).11  Other changes since the FT5 testing included replacement of the 1° compound receiver lens with a 

lens of equivalent FOV and throughput which did not require the single element corrective lens required by the existing 

one, slight increase to the divergence of the transmitter optics to increase the overfill factor for robustness to 

transmitter/receiver misalignment, and addition of dry-gas purge ports to the FLSH and LEB to preclude methane fume 

build-up from the Morpheus tank off-gassing and to provide protection from the Texas and Florida humidity.  A new 

series of pointing metrology tests were conducted to map the unit vectors from the FPA pixels through the receiver 

optics to a set of fiducials hard-mounted to the FLSH frame which were in turn mapped to the navigation frame of the 

ALHAT system.  The Flash Lidar receiver optics are bore-sighted with a small optical witness camera (Go Pro Hero 3 

with a custom lens) mounted to the FLSH belly which provides a larger (8° along the diagonal) FOV context for the 

LIDAR image.  The LEB houses the laser electronics unit, the PC-104-based sensor controller (programmed in C++ with 

a Linux operating system), a Vicor-based power conditioning and distribution subsystem, signal conditioning and 

thermal control circuitry, and a laser termination system for safety which switches off the laser power supply when 

commanded remotely via telemetry.  To provide for terrestrial operations in humid environments, the Flash Lidar has 

provisions for dry-gas purge during all hangar and flight operations.  The addition of a dry-gas (CO2) purge bottle to 

Morpheus during the summer of 2014 provided purge gas during the last remaining periods where purging was not 

possible previously, i.e. the time just before, during, and just after flight.   

The inputs to the Flash Lidar include 28 VDC power, time synchronization signals, and commands.  The Flash Lidar 

outputs real-time calibrated, corrected 3-D range images with a range precision of 8 cm (1-σ), an absolute range accuracy 

of better than 35 cm over the operational range, and the necessary 10 cm GSD at a 750 m slant range to allow reliable 

detection of hazards smaller than the 40 cm goal.  A subset of the data is output via a serial port for telemetry and display 

in mission control.  Several real-time signal processing steps are applied to the raw images, including application of the 

precision calibration, application of the range accuracy calibration, masking of dead or intermittent pixels, application of 

a five-point median filter, insertion of a header which contains various house-keeping data parameters, and application of 

an Automatic Gain Correction (AGC) function.  The AGC adjusts detector voltage (and, thereby, sensitivity) 

autonomously in order to maintain the image intensity within the narrow dynamic range of the sensor in order to produce 

images at the desired range precision level by operating within the range/intensity calibration.  Based on lessons learned 

in the FT5 testing in 2012, additional tailoring was incorporated into the AGC settings to preclude instabilities in image 

intensity during AGC-commanded changes (i.e. ensuring the intensity changes made by AGC were small in comparison 

to the upper and lower thresholds selected which would trigger and AGC-commanded change). 

The Flash Lidar performance as stated in Table 1 meets the HDA/HRN goals (the goals under test presently) which 

were set early in the ALHAT project with the exception of the range precision goal of 5 cm.  However, the 8 cm range 

precision proved more than sufficient to detect hazards smaller than the 40 cm resolution goal.  The GSD of Table 1 is 

better than the ALHAT goal at the maximum slant range which Morpheus could provide since the Flash Lidar was 

designed to achieve the GSD goal at a larger slant range of 750m, thus at smaller slant ranges the GSD improves given 

the fixed-FOV receiver optics.   
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Figure 4.  Generation 2.2 Flash Lidar sensor system consisting of Flash Lidar Sensor Head (FLSH) at right and Flash Lidar 

Electronics Box (LEB) at left mounted to the Morpheus rocket with the KSC lunar hazard field in the background. 

Table 1.  Flash Lidar sensor specifications. 

 

3. LAB CHARACTERIZATION RESULTS 

Prior to flight, the Flash Lidar was extensively characterized at a LaRC outdoor test facility referred to as the 

Long Distance Test Range (LDTR) which allowed testing at ranges to be experienced during the Morpheus 

campaigns.  The test range was utilized to assess maximum operational range as well as to calibrate and characterize 

Parameter Value

Max operational range 1.3 km (1,2)                           

Defocus Limit 250m (2 pixel defocus)

150m(2)

100m (3)

Range precision 8 cm (1-σ)

Range accuracy < 35 cm (1-σ)

Full FOV 7.5m x 7.5m

1 pixel (GSD) 5.9 cm

FLSH 11Hx13.5Dx13.25W inches

LEB 9.5Hx14.2Dx13W inches

FLSH 36 lbs (4)

LEB 36 lbs (4)

Power 450 Watts (4)

1 30° line-of-sight
2 70% normal reflectivity at 1.064 µm
3 30% normal reflectivity at 1.064 µm
4 Dominated by terrestrial environmental control subsystem

Size

Weight

Ground footprint (at 430m), 

normal target

Saturation Limit
Min operational range
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ultimate range precision and range accuracy performance.  Table 1 details the lab performance results, which met all 

of the performance requirements laid out in the introduction. 

The LaRC LDTR is shown in overview in Figure 5.  It consists of a fixed trailer 860m from the large B1261 

target building, a fixed tent 760m from B1261, a road which extends from the tent up to B1261 (to provide for any 

intermediate ranges desired to B1261), and a set of small target boards at set distances from the tent used in range 

accuracy calibrations.  A truck in which the lidar was mounted, was driven along the road between the tent and the 

B1261 in order to vary the range to B1261 for the range precision calibration and verification testing.  Figure 6 

shows the B1261 target building.  In addition to its sets of square and hemispherical targets (painted for a normal 

reflectivity of 30% at 1.064 µm to match the sand reflectivity at NASA-Armstrong where previous developmental 

flight testing was conducted), B1261 contains a flat area bare of any target in its upper right quadrant which is useful 

for range precision testing.  A set of five range accuracy target boards (20 inches by 20 inches) were located at set 

distances for use in range accuracy calibration. 

 

Figure 5.  LaRC Long Distance Test Range (LDTR) showing relative positions of lidar trailer, lidar tent, five accuracy calibration 

targets (positioned at ranges from the tent of 250m, 370m, 490m, 610m, and 730m), road along which truck can be operated, and large 

B1261 target building. 

 

Figure 6.  LaRC LDTR B1261 target building. 
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 The maximum operational range of the Flash Lidar was characterized on the LDTR B1261 target building with the 

Flash Lidar in its full flight configuration (as described in the configuration section above).  Based upon extrapolations 

from the LDTR results (shown in Figure 7) to the flight conditions, the predicted maximum operational slant range is 

approximately 1,300 m at the 30° line-of-sight approach angle planned (60° angle of optical incidence).  Given that the 

maximum slant range between the lidar and the KSC hazard field in the planned Morpheus Hazard Detection Profile 

(HDP) trajectory is 500m, the 1,300m performance is more than sufficient. 

 

 The extrapolation from LDTR results to flight predictions was accomplished by comparing the present LDTR results 

with those from past years which had been previously correlated to flight conditions during the 2012 FT5 campaign of 

reference 11.  The reflectivity of the bare wall portions of B1261 (i.e. the regions free of the rectangular cuboid targets, 

hemispherical targets, small window, and small door) at normal incidence was confirmed to be equivalent to the 

reflectivity of the KSC hazard field at the 30° line-of-sight angle (60° angle of optical incidence) at which the lidar views 

the hazard field from the maximum slant range portion of the Morpheus trajectory.  The reflectivity of the KSC hazard 

field at normal (0°) incidence for 1.064 µm was determined to be approximately 70% ± 10%.   

 

 
Figure 7.  Maximum operational range performance on LaRC LDTR B1261 target building, February 4, 2014. 

A series of range precision verification tests were conducted on the LaRC LDTR to confirm the quality of the range 

and intensity calibration tests also conducted on the LDTR.  An 8cm range precision (1σ) is achieved across the image 

when the range/intensity calibration is applied.  Range precision is essentially range noise on an image that can serve to 

hide a hazard which has a size comparable to the noise level.  As a reminder, algorithm simulations indicate that a 5 cm 

range precision coupled with a 10 cm or smaller GSD is needed in order to reliably resolve 30 cm hazards.6  Range 

precision statistically quantifies the agreement on range when all pixels are presented with a flat target and is defined as 

one standard deviation (1σ) among the 16,384 pixels within a single frame of range data.  Without the calibration, the 

range precision degrades to approximately 30 cm (1σ).  Range precision is measured by imaging a flat portion of the 

B1261 target building at approximately normal incidence (so that each pixel should see approximately the same range to 

target) from ranges which approximately correspond to the maximum and minimum slant ranges of the Morpheus 

trajectory over which the Flash Lidar is utilized.  In order to obtain the desired range from the B1261 target building, the 

lidar and its support equipment is mounted in a truck with a lidar window installed in its front and parked at the 

appropriate point on the LDTR road that leads up to B1261.  The upper right portion of the target building (from the 

orientation of a person facing the building) is utilized since it is flat and free of targets and surface features.  Insertion of 

neutral density (ND) filters over the beam output provides the attenuation needed in order to vary return intensities over 

the dynamic range of the sensor.   

Figure 8 shows the range precision from the calibration performance testing at 300m and 600m.  Range precision is 

plotted as a function of average return intensity over a given image.  Figure 8a shows that at 300m, the 8 cm goal is 

achieved from roughly 1800 counts up through 3500 counts, with a degradation in range precision below 1800 counts 

which is attributable to a low signal-to-noise ratio in which many pixels are not triggered and thus produce a false range.  

Figure 8b at 600m shows similar results, but with data points only available to 3000 counts given the longer range to 

target and accompanying weaker signal returns. 
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(a) 300m     (b) 600m 

 

Figure 8. Range precision results for 300m and 600m ranges from LaRC LDTR B1261 target building upper right flat area on 

December 5, 2013 which shows the subset of intensities over which the sensor achieves the project’s goals. 

 

Figure 9 provides a sample of the range and intensity calibration performance (range precision) at one particular 

intensity value (i.e. at one of the data points plotted in Figure 8a).  Figure 9a shows the intensity image of the upper right 

portion of B1261.  Figure 9a also displays the associated histogram which indicates that the intensity was generally 

uniform over the image.  Figure 9b shows a range image of that upper right portion of B1261, note the general agreement 

on range of all of the pixels.  Figure 9b also shows the associated range histogram to further illustrate that the 16,384 

pixels generally agree tightly on the range to target.  Figure 10 provides the same illustration as Figure 9 except at 600m 

rather than 300m.  Since Figure 10 is at a larger range, more of B1261 is visible given the fixed FOV of the receiver 

optics.  Thus, the upper right of the image should be considered since it is the flat, feature-free portion of the building 

which can give insight into the range precision performance of the Flash Lidar.  Again in Figure 10b (as in Figure 9b), 

the pixels tightly agree on range to target illustrating the overall performance shown in Figure 8. 
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   (a) Intensity     (b) Range 

 

Figure 9. Range and intensity calibration performance at 300m on the LDTR B1261 target building upper right flat region, December 

5, 2013. 

 

     (a) Intensity            (b) Range 

 

Figure 10. Range and intensity performance at 600m on the LDTR B1261 target building upper right flat region, December 5, 2013. 

A series of range accuracy calibration and verification tests were conducted on the LaRC LDTR. The Flash Lidar 

was situated in the tent, see Figure 5, on the LDTR and it imaged a set of five small 20 inch by 20 inch target boards 

situated at ranges to cover the operational range of the Flash Lidar (250m, 370m, 490m, 610m, and 730m), as shown in 

Figure 5.  The reflectivity at 1.064 µm of each target was selected depending upon its range to the lidar such that the 

return intensity of all targets would fall within the dynamic range of the lidar so that they could all be analyzed within the 

same frame.  Analysis of all targets within the same image frame minimized the range noise on each of the five 
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measurements (caused by image-to-image uncertainties) which improved the curve fit fidelity and yielded more accurate 

linear calibration coefficients.  The location of the five targets was surveyed to a 2cm accuracy and a range resultant was 

calculated to give known ranges from the Flash Lidar sensor to each of the targets. A set of linear range accuracy 

calibration coefficients were computed based upon actual range to the targets versus the Flash-Lidar-reported range over 

several iterations to obtain convergence.  To check the final quality of the calibration, the five targets were imaged again 

to check for accuracy performance, however, unlike the calibration runs, the performance runs included image-to-image 

uncertainties.  Range error for a given target was computed by subtracting the surveyed range resultant to the target from 

the lidar’s reported range to the target.  The lidar’s reported range to the target was computed by taking the mean of all 

pixels on the target over 200 frames. The error bars of Figure 11 indicate plus and minus one standard deviation of the 

error at each target which is mainly due to image-to-image variability, but which also includes surveying errors as well 

as the range precision limit of the Flash Lidar.  The slight slope visible in the error plot of Figure 11 was not corrected by 

adjusting the calibration coefficients given the tight schedule constraints of the project and since the error met 

requirements over the Morpheus slant ranges for which the lidar would be relied upon (250m to 500m) to provide 

accuracy range values to the ALHAT navigation filter.  The range accuracy performance was also spot checked during 

Morpheus pre-flight, on-ground operations at KSC during pointing tests in which surveyed targets were imaged at ranges 

representative of those to be flown.  Overall the Flash Lidar range error is better than 35 cm (1σ) for the ranges tested 

between 250m and 730m. 

 

 
 

Figure 11. Tiger Eye 1004 range accuracy performance from 12/13/2013 as measured on the LaRC LDTR in which five target boards 

fixed normal to the lidar at surveyed ranges were imaged.  

4. MORPHEUS INTEGRATION AND FLIGHT TEST PLAN 

The FT6 flight test campaign which occurred in the spring and fall of 2014 was conducted onboard the Morpheus 

1.5B free-flying rocket-propelled lander flying approaches to the KSC lunar-like hazard field.  The three lidars along 

with the other portions of the ALHAT GN&C system (partners at JPL and JSC) were integrated to Morpheus at KSC.  

During the prior summer, an integration and tether test campaign had been conducted at JSC on the 1.5B vehicle for the 

purpose of identifying and correcting system integration issues.  During the same interval, the ALHAT sensors 

underwent a series of minor upgrades based upon lessons learned from the JSC tether testing.  A single tether test was 

conducted at KSC to confirm that all systems remained nominal before attempting the first integrated ALHAT/Morpheus 

free flight.  The FLSH was hard-mounted to the 2-axis HDS gimbal which was in turn hard mounted to the Morpheus 

upper deck.  The hard mounting ensured minimal attitude uncertainty relative to the vehicle navigation center.  The LEB 

was mounted to the upper deck of Morpheus via four shock-vibration isolators. 

The Morpheus rocket-propelled, free-flying test-bed was built by JSC using a design based upon the Armadillo Pixel 

vehicle.  It is powered by a gimbaled engine burning a mixture of Liquid Oxygen (LOX) and Methane.  The LOX-

Methane propulsion system, still a highly experimental propulsion system, was chosen since its fuel could be 

manufactured in-situ using compounds present in planetary bodies and also since its fuel is clean-burning and does not 

produce pollutants.  Morpheus also utilizes a hot-gas LOX-Methane Reaction Control System (RCS) for vehicle attitude 
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adjustments in flight.  The LOX-Methane systems, like the ALHAT systems, are part of the technology development 

portion of the project.  Although the vehicle operated autonomously, the MMCC, located on the bottom floor of the 

Shuttle Landing Facility (SLF) air traffic control tower, issued various pre-flight commands and received extensive 

telemetry for real-time monitoring of its various subsystems (including the ALHAT systems) using the Integrated Test 

and Operations System (ITOS).  The MMCC also housed the range safety officer station which was able to issue the 

laser safety termination command for the Class IV non-eye-safe Flash Lidar as well as both the soft abort (vehicle lands 

immediately and autonomously) and hard abort (engine shuts down and the vehicle falls) commands in the event that the 

vehicle strayed outside of its safety bounds. 

The ALHAT FT6 campaign onboard Morpheus consisted of single approaches (one per flight) to a lunar-like hazard 

field at KSC as shown in Figure 12.  The Hazard Detection Profile (HDP) trajectory reached 245m in altitude and 

extended 405m downrange.  The launches occurred at the north end of the former SLF runway 33 and the landings 

occurred at the safe-site on the lower right of the KSC lunar-like hazard field.  In the hours leading up to launch, the 

combined performance of the ALHAT navigation system, the HDS gimbal pointing system, and the Flash Lidar systems 

are tested by commanding pointing to two targets at fixed, surveyed points at ranges of approximately 90m and 350m.  

When the combined system was able to point to and image the targets, confidence was gained in system configuration 

and performance for the impending flight.  During the open-loop test flights, the Morpheus navigation system was in 

control of the vehicle and the ALHAT system functioned as it would if it were commanding the vehicle except that 

Morpheus would not accept the ALHAT guidance.  During the closed-loop flights, the Morpheus navigation system 

would begin accepting vehicle guidance from ALHAT early in the descent portion of the trajectory at which point 

ALHAT would identify the safe-site and continue to provide navigation updates to Morpheus for precision guidance to 

that safe site.  If the ALHAT guidance deviated outside of a tight tolerance set by the Morpheus, then guidance would 

revert back to the Morpheus GN&C inputs.  Note that the tolerances set by Morpheus were necessarily tighter than those 

on which the ALHAT GN&C was based for actual lander missions given the experimental nature of Morpheus and its 

inability to land under moderate off-nominal conditions safely. 

 

 

Figure 12. Morpheus HDP trajectory flown during the spring/fall 2014 FT6 campaign for FF10 – FF15.  The HDP included launch at 

the north end of the SLF runway 33 and landing on the custom-built lunar-like hazard field. 

The KSC lunar-like hazard field, shown in Figure 13, is a 100m by 100m custom-built field consisting of hazardous 

craters, rocks, and slopes representative of actual lunar distributions as well as safe sites.  Each hazard feature and safe 

site was precision surveyed.  A reference truth DEM was generated based upon the hazard field high-fidelity survey 

information for comparison against the in-flight generated ALHAT DEM’s.   
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Figure 13. KSC hazard field 100m by 100m in size containing rock (heights ranging from 30 to 100cm) and crater hazards along with 

hazardous slopes and safe sites located off the north end of the KSC SLF runway. 

 

5. FLIGHT TEST RESULTS 

The Flash Lidar, in concert with the NDL and LA lidar sensors and the experimental GN&C system, provided the 

performance needed in order to execute successful closed-loop, autonomous free-flights in which the Morpheus rocket-

propelled, free-flying test bed was guided by ALHAT through its trajectory to a safe site on the lunar-like hazard field at 

KSC.  A total of six free-flights (three open-loop flights and three closed-loop flights) were completed from April 2 – 

December 15, 2014 and are summarized in Table 2.  The sensors provided data to not only identify the safe site amongst 

the field of hazardous craters, rocks, and slopes in both day and night lighting conditions, but also provided updates to 

the ALHAT navigation filter in order to enable precision guidance of Morpheus by the ALHAT navigation system to a 

safe site.  Each of the three sensors experienced occasional performance degradation due to the Morpheus environment, 

however, not generally at the same time which permitted the hazard detection and guidance to proceed successfully.  The 

chief source of performance degradation occurred under certain wind conditions as the beams of the sensors passed 

through air heated by the rocket engine which created scintillation.  The Flash Lidar also suffered from pre-triggering 

under certain wind conditions which transported a dust cloud created during launch down-range into its FOV.  After 

some minor changes to the NDL and LA during the summer of 2014 and a restriction on winds for the Flash Lidar, FF15 

was flown free of degradation. 

 



14 

 

Table 2. Flight log for FT6 free-flight testing at KSC. 

 
 

The calibrated and corrected 3-D range images generated autonomously and in real-time by the Flash Lidar were 

stitched together into a near-real-time DEM by the HDS and processed to correctly find five safe sites on all flights under 

the HDA objective.9  The safest site was correctly ranked by the HDS on all flights and passed to the Morpheus 

navigation system for landing during the closed-loop flights.  On one closed-loop flight, the safe site was rejected by 

Morpheus because of a half-meter offset in the ALHAT-selected landing point (Flash Lidar scintillation induced by air 

heated by the Morpheus rocket engine and an internal HDS mapping anomaly were contributing factors) even though it 

was within the ALHAT landing criteria for a spacecraft lander; the Morpheus landing criteria was necessarily tighter due 

to its experimental nature.  The HDS-selected safe site was rejected on another closed-loop flight because the safe site 

selected by HDS happened to not be one which had the structural reinforcement necessary to bear the weight of 

Morpheus.  During that flight, one of the reinforced safe sites had been populated with an array of small rocks for a 

piggy-back experiment which may have been detected by the ALHAT system consequently lowering the rank of that 

safe site and causing it to not be selected as the safest of the five options.  After mosaic generation and safe site selection, 

the Flash Lidar images continued to be used for generation of navigation updates under the HRN objective.  The Flash-

Lidar-based HRN updates that were accepted by the navigation filter provided fine tuning of the navigation solution and 

contributed to precision navigation as part of the closed-loop GN&C. The Flash Lidar met its performance requirements 

which in turn enabled the HDS to successfully accomplish its mission.  The Flash Lidar met its operational range 

requirements, successfully generating range images from the maximum slant range down to the minimum needed.  

Although the Flash Lidar fell just short of its 5 cm range precision goal and instead achieved 8 cm, its calibrated and 

corrected images were more than sufficient to enable detection of hazards 30cm in size and larger, thereby exceeding the 

original ALHAT hazard detection goals. 

 

Flight # Type Date Launch Duration

Time

GMT 

(EDT+4) sec

FF10 Open-loop flt #1

Wed, 

04/02/2014 20:22 94

FF11 Open-loop flt #2

Thurs, 

04/24/2014 19:22 96

FF12 Open-loop flt  #3

Wed, 

04/30/2014 17:57 92

FF13 Closed-loop flt #1

Thurs, 

5/22/2014 18:29 94

FF14

Closed-loop flt #2, 

Night flt #1

Wed, 

5/28/2014 2:02 96

FF15 Closed-loop flt #3

Mon, 

12/15/2014 21:11 94

Morpheus Free-Flying Rocket-Powered Test Bed with ALHAT Payload

Airport: NASA-Kennedy Shuttle Landing Facility (SLF) KTTS Runway 15-33

Hazard field: Located at departure end of NASA-Kennedy SLF runway 33

FF: Free-flight (not tethered to crane)
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         (a) Median Intensity                  (b) Median Slant Range 

 
Figure 14. Median intensity (a) and median slant range (b) profile for the latter portion of FF15. 

The Flash Lidar generated 3-D images of the hazard field from the maximum slant range allowable by Morpheus’ 

current generation engine of approximately 470m at a 30° LOS angle (resulting in a 60° angle of incidence for the Lidar) 

down to below the minimum slant range requirement of 250m.  Previous flight testing onboard a UH-1H helicopter to 

the same KSC hazard field validated the Flash Lidar’s maximum operational slant range to be 1,350m.11 Based upon data 

from early 2014, the reflectivity at 1.06µm of the hazard field at an incidence angle of zero is 70% which is a 

contributing factor to the Flash Lidar’s ability to exceed its maximum operational range requirement of 750m for a 30% 

reflective surface.  Figure 14 shows the median intensity and median slant range as a function of time for the latter 

portion of free-flight 15 (FF15).  Image time is based upon the 1980 GPS epoch, while MET (mission elapsed time) is 

based upon the Morpheus ignition time for the given flight.  The mosaic, in which successive real-time Flash Lidar 

images are received by the HDS and stitched together to form a larger FOV image of a significant portion of the hazard 

field, begins at a MET of approximately 44 sec and lasts approximately 6 seconds.  Figure 14a shows that the AGC 

function within the Flash Lidar sensor controller was consistently able to adjust detector voltage (and thereby its 

sensitivity) in order to maintain the image intensity within the narrow dynamic range of the sensor.  Operation within the 

sensor’s dynamic range enabled production of images at the desired range precision level of 8 cm (1-σ) so that hazards as 

small as 30 cm could be sensed.  Once Morpheus descends to a slant range within 150m of the hazard field, the AGC is 

not able to keep the image from saturating.  The consequence of image saturation is merely a small increase in range 

noise as range precision degrades slightly from the desired level.  Only one image acquired during the flight was 

corrupted and it occurred outside of the mosaic.  The single corrupted image was caused by a set of pixels along two 

extreme edges of the FOV which affected the t0 pixel due to their intermittent behavior which occurred in flight only 

(HDS masked these narrow columns of pixels so that they would not add noise to the range images).  Figure 15 shows 

individual range images of the hazard field (with rocks in view) from both the maximum slant range flown on Morpheus 

(approximately 470m) to below the minimum range requirement of 250m.  Each image in Figure 15 shows 128 pixels by 

128 pixels of data with slant range being the contour variable.  The color gradient from bottom to top in each range 

image is due to apparent slope caused by the 30° LOS viewing angle.  The minimum operational range of the Flash Lidar 

is dominated by saturation and defocus.  Since the defocus limit is more restrictive, the Flash Lidar images are accepted 

for HRN processing above 250m.  Figure 15 shows that the Flash Lidar produced images which met and exceeded the 

minimum range requirement.  The Flash Lidar incorporates an AGC algorithm which can hold the image intensity within 

the sensor’s dynamic range down to ranges of 150m for the 70% reflectivity of the KSC hazard field.  Operation within 

the dynamic range ensures that the range precision performance meets the 8 cm goal.  For the reference reflectivity of 

30% (closer to the typical 15% reflectivity of the lunar surface), the Flash Lidar’s minimum saturated-dominated range is 

100m.  The Flash Lidar receiver lens is set for maximum depth of field in order to provide in-focus images at all ranges 

above 250m. 
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                (a) Typical max slant range for Morpheus      (b) Typical min slant range on Morpheus   

 

Figure 15.  Flash Lidar operational range performance (30° LOS) exceeded requirements on Morpheus.  The Flash Lidar was capable 

of larger slant ranges than Morpheus could provide.  AGC held images within the calibrated dynamic range for range precision of 8 

cm (1σ) well below the 250m requirement. 

As an example of the hazard detection capability of the Flash Lidar, Figure 16 shows two 30cm rock hazards that are 

visually identifiable from a slant range of approximately 425 m.  The figure shows the surveyed ground-truth DEM 

described earlier of the hazard field along with an enlargement of one of the safe sites on whose periphery are the two 

30cm rocks of interest.  Both surveyed DEM’s show distance along their x and y axes and elevation as their contour 

variable.  The figure also shows the same two rocks in actual Flash Lidar DEM’s, each constructed from a single lidar 

image, whose axes and contour variable are the same as those of the truth DEM.  The Flash Lidar reconstruction of the 

rocks shows them to be 25 cm in size, which is just a 5 cm difference from the truth DEM.  The two Flash Lidar DEM’s 

are from two flights, one a daytime flight and one a nighttime flight, which demonstrates that the Flash Lidar is equally 

capable in all ambient lighting conditions.  For reference, the GSD at the range of Figure 16 is 6 cm, thus better than the 

10 cm requirement.  The GSD was better than the 10 cm requirement since the Flash Lidar was designed to achieve a 10 

cm GSD at 750m, thus given its fixed-FOV receiver optics, the GSD improves as slant range decreases.  Data from FT5 

showed that it was possible to visually identify a hazard smaller than the 40 cm requirement (25 cm hazard height in 

FT5) even with a GSD worse that the 10 cm requirement and a range precision worse than the current 8 cm.11  Thus data 

from both FT5 and FT6 indicate that the 40cm hazard resolution requirement has been met.  Figure 17 and Figure 18 are 

both DEM’s each created from a single Flash Lidar range image.  Figure 17 shows two rock hazards and a crater hazard.  

Figure 18 shows the central flat area of the safe site imaged in Figure 16 and gives some insight into the low noise range 

images provided.  The sloping to the left in the image is the natural, gradual terrain slope present in the hazard field. 

The Flash Lidar experienced several minor performance anomalies over the course of the campaigns.  Since the launch 

pad is approximately 400m up-range from the hazard field (i.e. launch and landing points very close by), the dust cloud 

created at launch was carried downrange under certain tail-wind conditions to the vicinity of the hazard field which 

resulted in lidar pre-triggering on the dust particles instead of on the hazard field.  Wetting of the launch pad area helped 

to minimize the effect and a wind restriction was placed on flight operations for FF15. The Flash Lidar also experienced 

minor performance degradation due to scintillation.  Additional details on performance degradation have been provided 

previously8 and will be expanded upon in a forthcoming publication. 
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          (a) Truth DEM of hazard field.             (b) Truth DEM safe site enlargement. 

 

 
    (c) Flash Lidar DEM from FF11 (day)                 (d) Flash Lidar DEM from FF14 (night) 

 

Figure 16. Rock hazards of 30 cm size (based on the truth DEM of “a” and “b”) which are situated on the periphery of the safe site 

imaged by the Flash Lidar from approximately 425m during both day (FF11) and night (FF14) flights.  Rock 1 is 30 cm and rock 2 is 

28 cm. 

 

 
 

Figure 17. FF10 hazard DEM. 
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Figure 18.  FF14 safe site (hazard field lower right) DEM. 

6. CONCLUSIONS 

For the first time, a GN&C and lidar-based sensing system autonomously scanned a lunar-like hazard field from an 

autonomous, rocket-propelled, free-flying lander on a lunar-like approach trajectory, then correctly identified a safe site, 

and subsequently provided closed-loop precision guidance for landing on a safe site.  An ALHAT-like system will be a 

necessity for future missions which will send landers to increasing complex sites (poorly lit, challenging terrain, etc.) on 

differing planetary bodies (moon, Mars, asteroids) due to the high scientific and mission payoff possible and will require 

them to do so with higher fidelity and safety.  Such a technology is being pursued by many space-faring nations since it 

promises to end the days of needing to land far from sites of high scientific value or sites near critical in-situ resources 

needed for colonization for fear of hazardous terrain or poor lighting conditions.  Flash Lidar technology is being 

evaluated by NASA to serve as the primary landing sensor in the GN&C system for future robotic and crewed landers 

because of its ability to generate 3-D images of the potential landing site in real-time for use in identifying hazardous 

craters, rocks and sloped terrain and for its ability to provide 3-D images from high altitude (>15 km) for use in terrain 

matching in order to fix the navigation state during initial powered descent.   

A Flash Lidar sensor system, which has been refined through several generations of development and a series of five 

previous field test campaigns, has been lab characterized and flight tested.  The ALHAT system consisting of the Gen 

2.2 Flash Lidar, the NDL, the LA, and the experimental GN&C system accomplished its sixth field test campaign in the 

spring and fall of 2014.  FT6 was conducted onboard the Morpheus 1.5B vehicle at KSC with landings on a custom, 

lunar-like hazard field located just off the north end of the SLF runway for the TRL 6 demonstration in a relevant 

environment.  In on-ground laboratory characterization, the Flash Lidar was shown to achieve all of the sensor 

performance goals defined early in the ALHAT project (with the exception of range precision which was missed by 3 cm 

at 1-σ).  In actual flight, the performance was shown to be more than sufficient to identify the safe site and provide 

precision guidance.  The Flash Lidar’s real-time 3-D range images at 20 Hz enabled the ALHAT HDS to create a 3-D 

DEM in near-real-time, to correctly identify hazards as small as 30 cm (better than the 40 cm ALHAT goal), to pass the 

correct safe site on to Morpheus, and to continue providing precision guidance to the safe site.   

The ALHAT system accomplished three open-loop flights and three closed-loop flights on a trajectory that peaked 

at an altitude of 250m and proceeded 405m down range providing nearly 500m of slant range for sensor testing during 

the approach trajectory.  To prove the all-lighting performance of ALHAT, one of the closed-loop flights was 

accomplished in the pitch darkness of night.  The Flash Lidar performance degradation initially experienced under 

certain wind conditions which brought air heated by the rocket engine into its FOV causing scintillation and which 

brought a dust cloud created at launch down-range into its FOV causing pre-triggering was mitigated through a wind 

restriction on flight operations.  The ALHAT system autonomously identified the safe landing site and provided closed-

loop, precision guidance for landing on a safe site to enable the TRL 6 demonstration. 
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