

Resource Prospector (RP)

A lunar volatiles prospecting and In-Situ Resource Utilization (ISRU) demonstration mission

Briefing to IEEE Robotics and Automation Society Daniel Andrews, RP PM 2016-07-20 http://www.nasa.gov/resource-prospector @NASAexplores

No Export Controlled materials (ITAR/EAR)

The Hunt for Lunar Volatiles

NASA

LCROSS not only confirmed presence of water-ice in a permanently-shadowed region, but showed there may be enough to be economically viable.

RP will provide water-ice distribution on human-scales [m-km], and will explore if areas of *temporary sunlight* might also retain water ice, making water potentially much more accessible.

Evolvable Lunar Architecture Press Conference 2015-07-20

The Top Strategic Risk: we don't know exactly how much water is in the moon or how deep, or how plentiful it is. This is a key strategic issue we need to understand... and if there is one thing we should do soon, it is to send soon a resource prospector to the moon.

Charles Miller - Study PI & President of NexGen Space LLC

NASA

Press conference by National Space Society (NSS) and Space Frontier Foundation (SFF) announcing their support for NASA's funding of the newly released NexGen Space study. Study: "Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture that Leverages Commercial Space Capabilities and Public - Private - Partnerships"; NASA funded the \$100K study; Independent review of study occurred 2015-03

7/20/2016

EVOLVABLE MARS CAMPAIGN

A Pioneering Approach to Exploration

THE TRADE SPACE

Board | Solar Electric Propulsion • In-Situ Resource Utilization (ISRU) • Robotic Precursors • Board | Human/Robotic Interactions • Partnership Coordination • Exploration and Science Activities Across the |

- Cis-lunar | Deep-space testing and autonomous Trades operations
 - Extensibility to Mars
 - Mars system staging/refurbishment point and trajectory analyses
- Mars Vicinity | . Split versus monolithic habitat Trades
 - Cargo pre-deployment
 - Mars Phobos/Deimos activities
 - Entry descent and landing concepts
 - Transportation technologies/trajectory analyses

AIAA SPACE-2014 Cont Crusan presentation, 2014-08-07

RP Mission Animation

Site Selection Criteria

Likely subsurface volatiles

- Sustained low subsurface temperatures conducive to volatile retention
- Orbital neutron spectrometer hydrogen signature

Sufficient daylight illumination

- More than 4 Earth days of solar power for rover operations
- Clement surface temperature for rover survival

Suitable for Direct to Earth (DTE) communication

- DSN stations clear the horizon

Traversable terrain

- Slopes < 10 deg
- Limited density of rocks

2011-10-18, "RESOLVE Sun & Shadow DRM 2.2", RESOLVE Architecture Team

7/20/2016

Information contained in this presentation is not subject to Export Controls (ITAR/EAR)

NASA

NSS Subsurface Hydrogen (Ice) Sensing

- Galactic cosmic rays shatter nuclei in the lunar soil
- The shattered nuclei release neutrons, creating a "flux" of neutrons leaking to space
- Those leaked neutrons tell us about near-subsurface composition
- Variations in that Neutron flux while roving, tell us about the abundance and burial depth of hydrogenous materials in subsurface

7/20/2016

NASA

The RP NSS measures neutron flux for prospecting, able to sense <u>hydrogen-bearing materials (e.g. water-ice)</u> up to 1 meter depth, enabling mapping while roving

Landing sites under discussion

• RP Team is working with candidate partners to optimize landing site

NASA

 Many possibilities exist trading volatiles concentration, terrain, lighting, Direct-To-Earth Comm, and mission duration

RP15 Field Testing

RP Neutron Spectrometer (NSS) & NIR Spectrometer (NIRVSS) field tests (2014-08)

NSS in the NASA-ARC Roverscape

- The NSS is located on the rover and in front of that is a neutron source holder for Earth testing only (simulating lunar radiation activity)
- The team has driven across rock patches and an ice proxy for testing

NA S

NIRVSS in the NASA-ARC Roverscape

 The team drove across rock patches and an ice proxy for testing

7/20/2016

RP Drill & NIRVSS testing 2013-09 & 2015-07

NASA

RP OVEN ETU testing 2014-04

- RESOLVE ISRU payload systems undergoing engineering test
 - Subsystem TVAC and vibe testing, drilling in relevant environment, etc

OVEN Reactor Heater at 700+°C

7/20/2016

RP Partnering Lander Concept 2014-05

- Prototyped a cost-efficient lander
 - Novel aluminum riveted structure concept reduces complexity and cost
 - NASA looking for international partner to provide the lander

Lander Prototype & Propulsion testbed

NASA

RP15 Payload Activities 2015-05

Payload & Drill subsystem

Regolith filling the crucible

Crucible processing

NASA

RP15 Rover Activities 2015-06

Rover Frame/Chassis

7/20/2016

Information contained in this presentation is not subject to Export Controls (ITAR/EAR)

NASA

Heat spreaders

RP15 Rover Activities 2015-06

Rover Suspension/Drive Subsystem

Suspension assembly

NASA

1g wheels

7/20/2016

RP15 Rover/Payload integration 2015-07

Rover Assembly NASA

RP15 In the Dirt 2015-08-15

18

RP15: Surface Segment (Payload/Rover)

Vision & Comm **Subsurface Sample Collection Camera/Antenna Mast** Drill Volatile Content/Oxygen Extraction **Oxygen & Volatile Extraction Node (OVEN) Operation Control Heat Rejection Flight Avionics Volatile Content Evaluation** Radiator Lunar Advanced Volatile Analysis (Simulated) **Resource Localization** (LAVA) **Neutron Spectrometer** System (NSS) Power **Solar Array** (simulated)

Sample Evaluation Near Infrared Volatiles Spectrometer System (NIRVSS)

Surface Mobility/Operation Rover

Rover Dimensional Comparison (approx.)

<u>RP/RP15</u> (2015):

- 1.5m x 1.5m x 2.0m (LxWxH)
- Weighs about 300kg

Spirit/Opportunity (2004):

- 1.6m x 2.3m x 1.5m (LxWxH)
- Weighs about 180kg

<u>Sojourner</u> (1996):

- 0.6m x 0.5m x 0.3m (LxWxH)
- Weighs about 11kg

<u>Curiosity</u> (1996):

 3.0m x 2.8m x 2.1m (LxWxH)

NASA

Weighs about 900kg

RP15 First Prospecting/Processing in the Field 2015-08-18

RP15 drilling in the JSC Rock Yard Crucible awaiting sample inside the rover

NASA

RP15 Drilling on a slope in the Field 2015-08-24

7/20/2016

Sloped Drilling at JSC

NASA

Sand Captured in Drill Brush Housing & Flutes

Information contained in this presentation is not subject to Export Controls (ITAR/EAR)

RP15 Rocky Weather in Houston 2015-08-18

Mother Nature rebelling. Building sand barriers to flowing water

NASA

Heading back to the highbay to do a systems check

7/20/2016

RP15 First Prospecting/Processing in the Field 2015-08-21

NASA

Distributed Operations Test testing 2015-08-21

NASA-KSC Payload Control room

NASA-ARC Mission Control room driving **RP15** rover @ NASA-

NASA-JSC Rock Yard from the rover (left) stereo camera

NASA

3-D Image Viewing of NIRVSS **Camera Images During DOT**

7/20/2016

RP15 Environmental Testing

RP15 in ARGOS gravity offload facility (1/6g) (VIDEO)

NASA

Mobility, Lander Egress, Drilling

RP15 in ARGOS gravity offload facility (1/6g) (VIDEO)

Wheel grouser studies: Obstacle climbing @ 1/6g

NASA

RP15 Undergoing TVAC testing 2016-03

NASA

7/20/2016

RP15 Undergoing Vibe testing 2016-03

TVAC chamber X/Y-axes testing of RP15 rover

TVAC chamber Z-axis testing of RP15 rover

NASA

7/20/2016

RP15 Drill testing 2016-06

Drill and samplehandling system readied for sample collection

7/20/2016

Drill testing at NASA-GRC's VF-13 TVAC chamber measuring lunar volatiles loss when drilling a meter deep into lunar soil and transferring materials into the RP rover

NA SI

Testing the flight-like RP system, including spectrometers, a drill, and sample-handling system at lunar conditions, with engineered lunar-like soil conditions, doped with 5% water and chilled to -100C

Stereo Vision testing in lunar polar contexts 2016-06

Studying stereo camera effectiveness with different rocks sizes/distributions and low-angle sunlight (long shadows)

NASA

7/20/2016

RP Education and Public Outreach Activities

• Full assault on Social Media!

7/20/2016

- Actively putting RP's message our there
- Ranking member Rep Mike Honda's Chief staffer requested an RP briefing @ NASA-ARC because of what he "and other techie staffers" read on Twitter

D Following

Resource Prospector rover systems undergoing thermal vacuum tests to see if they can handle life on the moon!

Information contained in this presentation is not subject to Export Controls (ITAR/EAR)

Resource Prospector (RP) Overview

Mission:

- Characterize the nature and distribution of water/volatiles in lunar polar sub-surface materials
- Demonstrate ISRU processing of lunar regolith

RP Specs:

- Mission Life: 6-14 earth days (extended missions being studied)
- Rover + Payload Mass: 300 kg
- Rover Comm: X-band 600kbps directional / 4kbps omni downlink
- Rover Dimensions: 1.4m x 1.4m x 2m
- Rover Power (nom): 300W
- Max speed: 25cm/s. Prospecting: 10cm/s
- Cost: <\$350M (excl LV)
- Mission Class: D-Cat III
- Launch Vehicle: Falcon 9 v1.1

Project Timeline:

- ✓ FY14: Phase A (Formulation)
- ✓ FY15: Phase A (Demonstration: RP15)
- FY16: Phase A (Environmental testing: RP15)
- FY17: Phase B SRR/MDR
- FY18: PDR (Implementation)
- FY19: CDR (Critical design)
- FY20: SIR/I&T

7/20/2016

• FY21/22: RP launch

