

Non-Contacting Finger Seals Static Performance Test Results at Ambient and High Temperatures

Margaret P. Proctor NASA Glenn Research Center Cleveland, OH 44135

52nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum and Exposition 2016 Salt Lake City, Utah July 25–27, 2016

Baseline Non-Contacting Finger Seal (NCFS)

2

Non-Contacting Finger Seal—Pre-Test

- Haynes-188
- Temperatures up to 1089 K
- Radial clearance to rotor = $24 \mu m$ (0.0009 in.)
- Lift pads ride over herringbone grooves

Herringbone Grooves on Seal Test Rotor—Pre-Test

- Rotor O.D.: 216 mm (8.5 in.)
- Grainex Mar-M–247 rotor
- Chrome carbide coating (HVOF)
- Surface finish: 0.2 μm (8 μin.)
- 536 grooves (268 around circumference)
- Groove depth: 20 µm (0.0008 in.)
- Groove ends:
 - Begin at middle of circumferential groove on lift pads
 - Extend past low pressure edge of lift pads

Builds 1 to 7

High-Temperature, High-Speed Turbine Seal Rig

Test Seal Configuration and Location of Research Measurements

7

Flow Factor

Test Procedure

- Initial room temperature static test
- Bind-Up test
- Repeat room temperature static test
- Static test with bigger clearance
- Static performance test at 533, 700, and 922 K

Static Leakage Performance of Non-Contacting Finger Seals at ~300 K

Pressure drop across seal, kPa

Factors Contributing to Effect of 2X Aft Finger

2X Aft Finger:

- Radial clearance is 6.35 µm smaller
- Seal land is 1.36 times longer
- Radial stiffness is 2 times greater
- Axial stiffness is 8 times greater

Static Leakage Performance of Build 4 Average Inlet Air Temperature = 862 to 911 K

Comparison of Static Leakage Performance of NCFS on Herringbone-Grooved Rotor to Smooth Rotor at ~300 K

Static Leakage Performance of NCFS With Tapered Lift Pads and No Circumferential Groove

For Builds 6 & 7:

- Above 300 kPa, flow factor is similar to Build 4.
- At lower pressures, there is more hysteresis than Build 4 and a different curve shape.
- The peak at ~20 kPa suggests the lift pad initially moves away from rotor.
- Entire lift pad is the seal land.
- Tapers create a different pressure distribution under the lift pad.
- At 900 K, the peak in flow factor doesn't occur when decreasing pressure.

Bind-Up Test Results

Table 6 Bind-up test results: Pressure differential across the seal, kPa											
	Build no.	Less free wheeling	Free wheeling stopped	Tight	Comment						
	1	83	124	248 (faint squeak)	2 N-m at 248 kPa						
	2	55	83	165-248	At 248 kPa light squeak						
	3	96.5	317	386							
	4	96.5	303	344	At 517 kPa very hard to turn						
	4 at 672 K	317	358	414							
	5a	68.9	262	372							
	5b	83	138	345	At 150 kPa, 6.8 N-m						
	6	83	248	414	At 414 kPa, 4 N-m						
	7	96.5	276	317 (faint squeak)							

- Maximum ΔP Capability at 300 K ranged from ~100 to 300 kPa.
- Builds 3 & 4 with 2X Aft Finger had the greatest ΔP Capability. •
- At 672 K, Build 4 radial clearance increased due to different • coefficients of thermal expansion and has more ΔP Capability.

Inspection of Build 1 After 922 K Static Performance Test

Heat marks Rub spots from bind-up test

 Heat marks indicate that flow fans out from point sources.

Damage from bind-up test ¬

 Bind-up is due to contact of seal land at the heel of aft finger.

Conclusions

- 1. ΔP and some rotation is needed to seat the seal for repeatable flow measurements.
- 2. ΔP across the seal deflects the fingers to contact and bind the rotor.
 - Contact occurs at the heel of the aft finger.
 - Wear pattern suggests the aft finger may deflect axially and twist slightly and/or that the forward finger contacts the rotor as well.
 - The ΔP at which bind-up occurs increases with increased radial clearance.
- 3. Completely covering the gaps between aft fingers with forward fingers of the same ID significantly reduces leakage.
- 4. Longer seal lands as in the tapered lift pads can cause more leakage with increasing pressure due to lift of the fingers. The taper provides a path for more high pressure to access the lift pad ID and there is more area for the high pressure to act compared to lift pads with a circumferential groove.

Conclusions Continued

5. The maximum ΔP capability of the NCFS tested at static conditions was ...

```
between ~100 to 300 kPa at 0 rpm.
```

Due to centrifugal growth of the rotor, the maximum ΔP capability should be adjusted downward as speed is increased.

- 6. Build 4 (2X Aft Finger and same ID Forward Finger)
 - had the lowest flow factor of ~7 kg-K^{0.5}/(MPa-m-s)
 - and the least hysteresis.
- 7. Performance testing below the maximum ΔP capability is needed to determine if hydrodynamic lifting forces will prevent contact as the shaft grows with rotational speed.

Backup slides

Leakage Flow Model

Assumptions

- Isentropic flow
- Seal leakage area is sum of areas of each flow path
- Geometry is fixed
- Lift pads remain concentric to rotor
- Finger elements held tightly to each other and seal dam so there is no leakage between contacting areas
- Pressure in balance cavity equals seal inlet pressure

Flow Areas

Build	Max to Min Ranking No. Flow area, mm² 3 50.0 5b 44.0 1 42.4 4 37.6 5a 36.4 2 30.0 5 14.9 7 14.9			Flow 1	Flow 2		
Build	ild Description		Flow areas (mm ²)				
no.		A	At seal dam	Pin holes	Under lift pads	Total	
1	Baseline		13.8	13.0	15.6	42.4	
2	Baseline with same ID		13.8	0.6	15.6	30.0	
3	3 Baseline with two times aft finger		25.5	13.0	11.5	50.0	
4	Two times aft finger and same ID		25.5	0.6	11.5	37.6	
5a	Build 1 on smooth rotor		13.8	12.8	9.8	36.4	
5b	5b Build 3 on smooth rotor		25.5	12.8	5.7	44.0	
6	0.0127 mm circum. taper		13.0	0.3	1.6	14.9	
-	0.0127 mm axial taper		12.0	0.2	1.6	140	

Predicted Flow Factor for Build 4

Static Leakage Performance of Baseline Non-Contacting Finger Seal, Build 1, 276 to 294 K

Static Leakage Performance of Build 2 Average Inlet Air Temperature = 297 to 299 K

Static Leakage Performance of Build 3 Average Inlet Air Temperature = 301 to 303 K

Static Leakage Performance of Build 4 Average Inlet Air Temperature = 303 to 304 K

Static Leakage Performance of Build 5a Average Inlet Air Temperature = 280 to 292 K

Static Leakage Performance of Build 5b Average Inlet Air Temperature = 282 to 289 K

Static Leakage Performance of Build 6 Average Inlet Air Temperature = 283 to 294 K

Static Leakage Performance of Build 7 Average Inlet Air Temperature = 275 to 298 K

Static Leakage Performance of Build 7 Average Inlet Air Temperature = 866 to 908 K

Leakage Flow Model

$$\dot{m} = \frac{P_u}{\sqrt{RT_u}} \cdot A\sqrt{\gamma}M\left(1 + \left(\frac{\gamma - 1}{2}\right)M^2\right)^{1/2\frac{\gamma}{\gamma - 1}}$$
where
$$M = \left[\left(\left(\frac{P_u}{P}\right)^{\frac{\gamma - 1}{\gamma}} - 1\right)\frac{2}{\gamma - 1}\right]^{\frac{1}{2}}$$

For air (γ = 1.4), when P/P_u ≤ 0.5283 the flow is choked

$$\dot{m} = \frac{P_u}{\sqrt{RT_u}} \cdot A \cdot (0.6847)$$