

Development of a Microwave Regenerative Sorbent-based Hydrogen Purifier

Ray Wheeler, Ross Dewberry, Bryan McCurry *UMPQUA Research Company, and* Morgan Abney, Zachary Greenwood *NASA - Marshall Space Flight Center (MSFC)* Elon Laws

- Development work was performed under a NASA Marshall "Phase 3" contract awarded to UMPQUA Research Company located in Myrtle Creek, Oregon
- Followed a Phase 1 SBIR project demonstrating hydrogen purification using sorbent techniques
- Goal was to develop a Sub-Scale Device Microwave Regenerative Sorbent-based Hydrogen Purifier (MRSHP) -> 0.5 CM target
- Rapid 6-month development schedule: Design, build, test and deliver sub-scale MRSHP to MSFC Technology to support independent validation testing

MRSHP Technology Overview:

- Microwave regenerated 13x molecular sieve allows hydrogen to pass while capturing contaminant gases (acetylene, methane, water, etc.).
- Prototype designed for sub-scale demonstration at nominal 0.5-CM scale hydrogen production rate of Plasma Pyrolysis Assembly (PPA) with a targeted 30 minute regeneration required every 8 hours.
- Original plan was to have this device serve as an intermediate scale test-bed to support accelerated development of a 4-CM capacity prototype at the end of a Phase 2 effort.
- Independent testing to be performed at Marshall would help assure full scale (4-CM) by end of 2 year project.
- Phase 3 funding awarded to span the gap between SBIR Phase 1 and Phase 2.
- Design, development, fabrication and testing work was accomplished in a 6.5 month time frame (normally requiring 2 years).
- Limited performance testing / bed optimization was performed, but fully functional operation confirmed and device ready for independent evaluation when integrated with PPA at Marshall.
- Waveguide sorbent bed was refurbished just prior to testing and final verification tests were performed.
- Labels were prepared and attached just prior to final photos and crating.
- Final Report and a Specifications/Integrations manual prepared.
- Shipped device on Sept. 24thand arrived at MSFC on Oct. 5th.

SBIR Phase I Proof-of-Concept Testing Summary

- 13x media performed best.
- Both cylindrical and rectangular waveguides evaluated.
- Single ended heating.
- Most of sorbent volume not regenerated.

JULY 10-14TH 2016

Phase 3 Initial Tasks (1st month):

- Acetylene decomposition study
 - Temperature dependence of decomposition
 - Product (carbon) impact on sorption
 - Impact on microwave desorption
- Preliminary design of sub-scale prototype
- Identify and order long lead-time components
- Dielectric properties measurements
- Temperature profile measurements
- Model preparation and comparisons to test data

Temperature Dependence of Acetylene Decomposition

Observed During Thermal Desorption

Microwave Heating of 13x as Function of Exposure Time

Short Exposure Time Grace Short Exposure Time Delta Constant Exposure Grace

Time [s]

-Sample pairs positioned symmetrically in oven -Heated for successively longer time intervals with periodic temperature measurement

≈ 1250

Virgin Media **Duplicates**

JULY 10-14TH 2016

Phase 3 Preliminary Prototype Design

- Minimal hardware necessary to demonstrate technology
 - Manual push button controls
 - Microwave components and meters
 - Waveguide sorbent bed
 - Temperature probes and reader
 - Plumbing and solenoid valves as necessary for basic operation
 - External vacuum source, cooling loop and gas flow control required
- Microwave power distributed along length of sorbent bed
- Coaxial cable feeds to antennae inserted in media
- Fan cooled radiator with recirculated gas flow for cooling (not used in final design)
- LEL monitors all connections and gas components within a hazardous gas enclosure and removes gas flow on alarm JULY 10-14TH 2016

<u>Short Project Duration Required that Long Lead-Time</u> <u>Items be Identified and Ordered/Fabricated Early On</u>

- ✓ Microwave Power Source (6-7 weeks)
- ✓ Directional Couplers (8-10 weeks)
- ✓ Waveguide Circulator (8 weeks)
- ✓ Water Load (6-7 weeks)
- ✓ 3-Stub Tuner (6-7 weeks)
- ✓ Waveguide Tees (6-8 weeks)
- ✓ Waveguide to Coax Transitions (6-7 weeks)
- Single Stub Tuners (6-7 weeks); Custom 3-Stub Tuners Fabricated Instead
- Coaxial Cables (1-5 weeks)

<u>Dielectric Properties</u> <u>Measurements Required</u> for Design/Modeling Effort

Figure 28. Molecular Sieve 13X with Clay Binder: Real (ε') and Imaginary (ε'') Components of Complex Permittivity. (Excerpt from URC 80851-1, page 33, 1999)

Temperature Profile Tests

Probes Inserted Centered Along Length of Test **Section**

Profile Readings for the Microwave Test Assembly (2nd Test on 4/7/15)

120 sec @ 100 W with 20-30% Reflected Power Using 13x from Grace Davison, in a 6.375" WR284 Waveguide (2.84" x 1.34") with Quartz Windows on Both Sides of the Assembly, Progressing from

60 sec @ 100 W with 20-30% Reflected Power Using 13x from Grace Davison, in a 6.375" WR284 Waveguide (2.84" x 1.34") with Quartz Windows on Both Sides of the Assembly, Progressing from

Computer Model Preparation

ALIL

No quartz windows:

With inlet window only:

With both windows:

No quartz windows:

Multiple Narrow-Wall Probes:

Multiple Broad-Wall Probes:

<u>Conclusions From Testing / Modeling</u> <u>and Comparisons</u>

- Dielectric properties used appear to be accurate.
- Modeling results match observed effects in real device.
- Thermocouple probes can be inserted orthogonally to electric field with minimal impact on operation.
- Significant microwave heating occurs for 13x and regeneration temperatures over 400 °C are attainable.
- Single-ended waveguide power feed yields poor media coverage due to rapid attenuation (the flip side of good heating).

Evolved Prototype Process/Hardware Design (Month 2)

- Minimal hardware necessary to demonstrate technology
 - Manual push button controls
 - Microwave components and meters
 - Waveguide sorbent bed
 - Temperature probes and reader
 - Plumbing and solenoid valves as necessary for basic operation
 - External vacuum source, cooling loop and gas flow control required
- Microwave power distributed along length of sorbent bed
- Coaxial cable feeds to antennae inserted in media
- Surface cooling plates used for rapid cool down
 - LEL monitors all connections and gas components within a hazardous gas enclosure and removes gas flow on alarm JULY 10-14TH 2016

Prototype Hardware Rack Layout Design

AD ALLANIA

	Quantity	UNLESS OTHER WISE SPECIFIED:		NAME D	DATE	INADOLIA DESEADOLI	
		DIMENSIONS ARE IN INCHES TOLERANCES: FRACTIONAL± ANGULAR: MACH± BEND ± TWO PLACE DECIMAL ±.010 THREE PLACE DECIMAL ±.005	DRAWN	BDM	5/12/15	UMPQUA RESEARCH	
			CHECKED			TITLE:	
			ENG APPR.				
			MFG APPR.			HYD-PUR	
	-		Q.A.				
		I OLERANCING PER:	COMMENTS:				16
		THE STERESE				SVE DWG NO KEV	

Computer Model Preparation

У**, Т**, х

- Construct model closely resembling targeted design
- Build upon successful simple models to become more elaborate (complete) prototype design

Thermal Power Analysis •

(Feasibility Study for

Required Heating Rate)

WR340 waveguide cross section

- Solid quartz block used as crude modeled representation of media
- Conductive heat transfer
- Core volume representative of microwave power distribution held at 210 °C regeneration temperature
- Walls at 20 °C
- Steady-state heat flow integrated over outer walls

Circular Core:

407 W thermal output

:. 400-500 W of microwave heating should be sufficient!

Elliptical Core: 550 W thermal output

Post regeneration cooling time evaluation

- WR340 waveguide 23.3" long
- 13x media at 50% packing density
- Mixed media approximation of material properties
- Model initial temperature set to 210 °C uniformly throughout bed
- Walls at 20 °C and ends insulated
- Temperature distribution progression over time
- Temperature below 40 °C in 30 minutes (bulk of core ~30 °C)

Microwave Regeneration Temperature Distribution

46th

ENVIRONMENTAL SYSTEMS

Post Regeneration Cooling Time Evaluation

20.2

20.6

t=30 minutes

- Full thermal model of proposed ۲ design
- 20 minutes at 400 W initial state
- Walls at 20 °C and ends insulated ٠
- Cools to under 30 °C in 20 • minutes (even faster than predicted in earlier crude evaluation)

JULY 10-14TH 2016

Impact of Quartz Sleeves

Time=1200 Multislice: Temperature (degC)

- Field intensity drops off as 1/d^2
- Quartz is both thermally stable and microwave transparent

46th INTERNATIONAL

ENVIRONMENTAL SYSTEMS

2016

Key Decisions / Direction

- Proceed with overall prototype fabrication
- Identify and order balance of prototype hardware except for bed
- Grace Davison 13x sorbent media to be provided by Marshall.
- Develop computer model for a second (cylindrical) candidate microwave desorbable H₂ purification bed design
- Compare each bed design's strengths and weaknesses and select best design for prototype
- Begin fabrication of selected bed ASAP

<u>Waveguide mode</u> <u>analysis</u>

- Solutions to Maxwell's equations
- TEM wave solutions in free space
- TE and TM modes in waveguides
- Dielectric materials in waveguides can increase possible number/types of modes
- Higher order modes have not been observed in modeling with 13x in WR340 even though they can exist

Evaluation of custom 3-stub tuner design

- **Expected tuner** operation confirmed by modeling
- Tuning to greater than 99% power transfer can be achieved
- If no specific stub tuning combination works then turn asymmetrical tuner 180 degrees and retry
- Works just like tuners used in lab

WR284 waveguide based 3-Stub Tuner Evaluation. (Left-) Tuner attached Figure 1. to a pyramid shaped water load. (Right-) Resulting electric field intensity profile.

JULY 10-14TH 2016

<u>Feasibility analysis of</u> <u>3-stub tuning</u> <u>approach for a typical</u> <u>coax to sorbent bed</u> <u>interface</u> Simple model prepared: tuner->coax transition->coax cable->load.

- Will hot spots degrade cable power handling?
- Reflection coefficient determined by measuring peaks and valleys.
- When tuned to 97% power transfer to load, VSWR =1.25 which is less than maximum value of 1.35 specified for PE345 cable.

Computer model preparation of circular waveguide sorbent bed

0.4

0.2

0

y 1

- working rectangular model (short model development time)
- WR340 rectangular model modified for a 3.0 inch circular waveguide

Microwave Regeneration Temperature Distribution

- 3.0 inch i.d. circular waveguide 19" long
- Same volume as WR340 rectangular waveguide
- 13x media at 50% packing density
- Mixed media approximation of material dielectric properties
- Walls at 20 °C and ends insulated
- 4 coax antennae
- 0.5 inch o.d. quartz sleeves on each
- Temperature profiles with and without thermocouple probes
- 20 minutes at 400 W
- Higher peak temperature than rectangular design VIENNA

Thermocouple Probes

JULY 10-14TH 2016

Post Regeneration Cooling Time Evaluation

- Full thermal model of proposed design
- 20 minutes at 400 W initial state
- Walls at 20 °C and ends insulated
- Snapshots taken of temperature distribution over time
- Cools to 37 °C in 30 minutes (similar to rectangular design)

Isothermal surface profiles at 210 °C after 20 min. at 400 W

WR340

x

Isosurface: Temperature (ded)

▲ 210

▼ 210

▼ 210

- Targeted minimum regeneration temperature envelope of 210 °C develops down the center of each bed design
- ~30% of WR340 bed volume above 210 °C vs. ~50% of 3.0 in circular bed (however, ends are under utilized)
- Despite better regeneration coverage, fabrication of a circular bed that incorporates cooling is costly and much more complicated
- Therefore rectangular design selected for fabrication

Photos 6-25-15 (Month 3)

Photos 7-21-15 (Month 4)

Figure 1. MRSHP prototype assembly. (Top Left-) Empty rack with door closed; (Top Center-) Empty rack with door open; (Top Right-) Rack with microwave hardware on top; (Middle Left-) Rack with waveguide Hmount; (Middle Center-) Waveguide H-assembly; (Middle Right-) Rack with waveguide H-assembly mounted; (Bottom Left-) Custom tuner, coax transition, coaxial cable and antenna; (Bottom Center-) Coaxial panel mount antenna; (Bottom Right-) Copper cooling plate assemblies.

46th INTERNATIONAL

ENVIRONMENTAL SYSTEMS

ICES

2016

Photos 7-21-15 (cont.)

Figure 2. MRSHP waveguide bed. (Upper-) WR340 Bed; (Lower-) Bed and narrow side cooling plates.

Photos 8-19-15 (Month 5)

Figure 1. Loading of the WR340 rectangular waveguide based sorbent bed. Top to Bottom: (1st Row, Left-) Empty bed; (1st Row, Middle-) bed with quartz wool at bottom; (1st Row, Right-) First layer of 13x added; (2nd Row, Left-) Second layer added; (2nd Row, Middle-) Third layer added; (2nd Row, Right-) Final layer of 13x added; (3rd Row, Left-) Top layer of quartz wool added; (3rd Row, Middle-) Perforated plate added; (3rd Row, Right-) Gas inlet/distributer end piece added; (4th Row) Fully assembled bed.

46th INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SYSTEMS

2016

Photos 8-19-15 (cont.)

Figure 2. Final assembly of the MRSHP prototype. Top to Bottom: (1st Row, Left-) Front view; (1st Row, Middle-) Front view with door open; (1st Row, Right-) Close up view of bed and control panel; (2nd Row, Left-) Left side view; (2nd Row, Middle-) Right side view; (2nd Row, Right-) Rear view.

VIENNA

46th INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SYSTEMS

ICFS.

2 2016

Individual Port Tuning

Prototype Testing (Month 6)

Performance Testing / Defining Upper Limits :/

- Not much time for this activity in a 6 mo. project
- Cables and connectors destroyed
- Bottom Line \rightarrow 300 °C and/or 400 W too extreme
- Note that this is discovered in the last two weeks of the project...
 VIENNA

Cont.

Outline of Rebuild and Re-test

Progression in Final Week of Contract

- Improved connector design
- Plugs in holes at end of quartz sleeves to keep media away from antennae
- Sorbent bed reassembled
- Poor performance was observed when retested?? Why?? What changed??
- Oops, wrong Teflon used (not specified for electrical applications)
- Rapid rebuild and refurbishment for delivery, with new cables and original connector design and original Teflon
- Last minute evaluation tests confirm that original performance restored
- 200 W and 210 °C limits used for large safety margin (compared to 400 W and 300 °C)
- Connector and cable temperatures stay well below rated levels

Evaluation <u>Testing</u>

Influent Hydrogen Stream Composition (QMS raw data)

Figure 2. Evaluation testing of the MRSHP prototype. (Upper) Prototype under test; (Middle) Sorption influent composition at 2-CM PPA effluent levels; (Lower) Acetylene Sorption / Desorption profiles.

46th INTERNATIONAL

ENVIRONMENTAL SYSTEMS

2016

Performance Summary

- Assuming a 2 hour vacuum/microwave heated desorption (regeneration) in each case :
 - Steady-state regenerated bed capacity, while operating at 2-CM equivalent PPA effluent levels, was observed to be at least 4 hours.
 - Predicted steady-state regenerated bed capacity, while operating at 1-CM equivalent PPA effluent levels, should be 8 hours.
 - Predicted steady-state regenerated bed capacity, while operating at 0.5-CM equivalent PPA effluent levels, should be 16 hours.
- These compared to the design target of 0.5-CM capacity with 0.5 hour regeneration after 8 hours.
- Note that shorter regeneration times were not tested.
 Therefore a 1 hour regeneration may restore adequate capacity.
 Further testing required...

Refurbishment and Final Preparations

Figure 3. Preparation of the MRSHP prototype for delivery. Left to Right: (Upper Photos) Refurbishment- empty HGE, new cables w/ disassembled bed, media removed and saved; (Middle Photos) Reassembly- quartz sleeves affixed inside bed and shielding placed on thermocouple probes; (Lower Photos) Tuning, labeling, photos and shipping.

JULY 10-14TH 2016

Delivered MRSHP

Further Development

- Integrated performance testing is required using sub-scale Microwave Regenerative Sorbent-based Hydrogen Purifier
- Results will provide important guidance to advanced designs
- Scale-up to full 4-CM capacity requires a significant level of effort such as a 2-year SBIR Phase II
 - Optimize power utilization and distribution for heating media
 - Minimize system volume and complexity
 - Investigate cylindrical design with possible 2-fold regenerated capacity improvement over rectangular waveguide
 - Full-scale prototype would be designed to demonstrate continuous long-term operation as integrated to the advanced PPA located at MSFC

Acknowledgement:

This work was funded by NASA's George C. Marshall Spaceflight Center under contract NNM15AA07C.