Functional Interface Considerations within an Exploration Life Support System Architecture

Jay L. Perry
NASA George C. Marshall Space Flight Center, Huntsville, Alabama 35812, USA

Miriam J. Sargusingh
NASA Lyndon B. Johnson Space Center, Houston, Texas 77058, USA

and

Nikzad Toomarian
NASA Jet Propulsion Laboratory, Pasadena, California, 91109, USA

As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>atmosphere revitalization</td>
</tr>
<tr>
<td>C&DH</td>
<td>command and data handling</td>
</tr>
<tr>
<td>EM</td>
<td>environmental monitoring</td>
</tr>
<tr>
<td>EVA</td>
<td>extravehicular activity</td>
</tr>
<tr>
<td>FOM</td>
<td>figure of merit</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>LSS</td>
<td>life support system</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NTRS</td>
<td>NASA Technical Reports Server</td>
</tr>
<tr>
<td>ORU</td>
<td>on-orbit replaceable unit</td>
</tr>
<tr>
<td>SMAC</td>
<td>spacecraft maximum allowable concentration</td>
</tr>
<tr>
<td>SWEG</td>
<td>spacecraft water exposure guidelines</td>
</tr>
<tr>
<td>VDC</td>
<td>volts direct current</td>
</tr>
<tr>
<td>WMS</td>
<td>waste management system</td>
</tr>
<tr>
<td>WRM</td>
<td>water recovery and management</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
</tr>
<tr>
<td>kW</td>
<td>kilowatt</td>
</tr>
<tr>
<td>psia</td>
<td>pounds per square inch absolute</td>
</tr>
</tbody>
</table>

2 Life Support Systems Engineer, Crew and Thermal Systems Division, NASA Johnson Space Center/EC2.
I. Introduction

DEVELOPING and studying mission architectures that implement the United States’ National Space Policy toward a capability-driven framework that extends the horizon of space exploration beyond the moon toward Mars requires unique, enabling technological capabilities.1–4 Among these capabilities is a regenerative, closed-loop life support system (LSS) that can support a crew of four, with the capability to grow to six, for missions lasting 500 to 1000 days and include deep space transit periods ranging between 420 days and 620 days.5–7 Consisting of atmosphere revitalization (AR), water recovery and management (WRM), and environmental monitoring (EM) subsystems as depicted by Fig. 1, the notional LSS architecture under development to support future exploration missions is building upon the core process technologies and significant in-flight operational record of the LSS used aboard the International Space Station (ISS).8–10 Ongoing technological development seeks to address functional needs and technical gaps that exist between the ISS and future exploration missions as well as serve to accelerate Phase A in a future exploration program life cycle.11–15

Taking advantage of the ISS as a laboratory that provides the unique conditions of a long duration, sealed living environment provides a rare resource for future LSS development. The environment aboard the ISS allows for LSS equipment interactions with that environment to be observed, studied, understood, and factored into the next generation system while operational strategies suitable for exploration missions can be tested. Observations and lessons learned from over three decades of design, development, testing, in-flight operations, refinement, and international collaboration that has culminated in the contemporary LSS aboard the ISS are invaluable for pre-Phase A developmental efforts. As the exploration LSS developmental efforts make progress toward Phase A development, these insights will prove invaluable to expediting the exploration mission program’s life cycle.16

Each functional area depicted in Fig. 1 represents a top level trade space for technological development. Lower level trade spaces for each developmental area must occur within a framework of guiding requirements. The technical solutions must also seamlessly address functional interfaces. The following discussion summarizes guidance relating to functional requirements and interfaces within the notional architecture.

II. Guiding Requirements for an Exploration Life Support System

Guiding functional requirements are essential for developing a notional LSS architecture and selecting suitable improvements in core process technologies relative to the ISS as the starting basis. At the present stage in the developmental life cycle, the guiding requirements that describe the basic mission, define general performance objectives, and provide design insight are derived from many source documents. Ultimately these guiding requirements will form the basis for future exploration program system requirements. The following describes the contribution of various documents to the exploration LSS guiding requirements.
A. Mission Definition Guidance

Information regarding the exploration mission duration and crew size is useful for selecting core process technologies and conducting early component sizing evaluations. The Mars Design Reference Mission serves as the basis for this information. The crew of four on a mission lasting at least 500 days and up to 1000 days is the foundation for exploration LSS development and part of the capability-driven framework for exploration. As well, this document provides guidance on the deep space habitat pressurized volume of ~280 m³ which is to provide ~24 m³ habitable volume per crewmember.¹⁷

B. Performance Objective Guidance

With the guidance on the crew size and mission duration, more details on metabolic loads and demands are found in the National Aeronautics and Space Administration’s (NASA) technical standards and handbooks. The NASA Space Flight Human System Standard and the Human Integration Design Handbook are excellent sources for guiding the LSS design point for metabolic loads and demands.¹⁸,¹⁹ The NASA Space Flight Human System Standard references two documents that provide details on specific cabin atmospheric quality and potable water quality. These two documents, JSC 20584 and JSC 63414, provide details on the spacecraft maximum allowable concentrations (SMAC) for airborne trace contaminants and spacecraft water exposure guidelines (SWEG), respectively. ²⁰,²¹ Recent developments pertaining to the need to control the carbon dioxide partial pressure to levels well below the published SMAC are considered as a functional goal.²² The guidance on cabin atmospheric pressure provided by the NASA technical standards and handbooks has been supplemented by recommendations by the NASA Exploration Atmospheres Working Group which recommended 101.5 kPa (14.7 psia) and 21% oxygen partial pressure for exploration mission design.²³ An update in 2013 retained the 101.5 kPa and 21% oxygen partial pressure design point for deep space exploration missions such as Mars transit but included the allowance for mission architectures with high-frequency extravehicular activity (EVA) demands to have the capability to operate at 56.5 kPa (8.2 psia) and 34% oxygen partial pressure. Exploration LSS developmental efforts have been working within the 101.5 kPa and 21% oxygen partial pressure guidance.

C. Supplemental Guidance

The mission definition guidance and performance objective requirements are supplemented by insight provided by subject matter expertise, flight program observations and lessons learned, and how programs such as ISS and Constellation have implemented these requirements in their specific program specification and requirement documents. Excellent supplemental guidance can be found in Guidelines and Capabilities for Designing Human Missions and the Constellation Human-Systems Integration Requirements document.²⁴,²⁵ NASA technical publications available via the NASA Technical Reports Server (NTRS) are also excellent supplemental sources. Observations and lessons learned from the ISS program are documented in numerous conference publications that describe LSS status and assembly level performance. The bibliography contains a listing of helpful supplementary documentation suitable for top-level LSS design development.

III. System Functional and Physical Interface Overview

The interfaces that exist between a crewed spacecraft and the LSS are numerous and can be quite complex. Figure 2 provides an extensive interface diagram for the notional LSS architecture. Significant interfaces between the LSS and the crew and the vehicle’s structural, command and data handling (C&DH), electrical power, thermal control, logistics management, and EVA systems are evident on examining Fig. 2. Specialty engineering considerations can drive requirements for acoustic noise, materials and processes, and maintainability among other specialty areas. Identifying all of the interfaces an LSS may have requires iteration and a high degree of communication across multiple technical disciplines. These iterative communications to define requirements is challenging and time consuming. Figure 2 represents a preliminary effort to evaluate primary interfaces.

Simplifying the interface diagram to consider the LSS alone is helpful for bounding the challenge. Figure 3 shows a simplified interface diagram for the LSS and its primary subsystems. In Fig. 3 the primary resources such as atmospheric gases and water are considered along with power distribution, thermal control, and C&DH.

Between the three LSS subsystems, the most significant interface consists of transferring water from the WRM subsystem to the AR subsystem to generate oxygen as illustrated by both Figs. 1 and 3. This water transfer represents a significant water demand for an exploration mission. Therefore, it is desirable to reduce the AR subsystem’s net water demand by employing carbon dioxide reduction. Depending on the carbon dioxide reduction technique selected, a fraction of the AR subsystem’s water demand ranging between 50% and 90% can be returned to the WRM subsystem. Therefore, selecting a carbon dioxide reduction technique that can minimize the water demands
for the exploration destination is an important consideration for the LSS architecture. The potable water quality measured by the EM subsystem is important to reliable oxygen generation over the mission’s duration; therefore, specific feed water quality requirements must be determined to provide the necessary reliability. Product water quality produced by carbon dioxide reduction processes must also be considered for its contaminant load on the WRM subsystem’s water processing equipment. The following presents interfaces within each LSS subsystem.

A. Atmosphere Revitalization Subsystem Interfaces

The AR subsystem purifies the cabin atmosphere, maintains its composition within the parameters discussed in Section II, and recovers oxygen from carbon dioxide. As shown by Fig. 4, the AR subsystem consists of eight primary functional areas. These functional areas are the following:

1) Process gas moisture management.
2) Carbon dioxide removal.
3) Carbon dioxide conditioning and management.
4) Carbon dioxide reduction.
5) Carbon dioxide reduction product processing and management.
6) Oxygen generation and supply management.
7) Trace contaminant control.
8) Particulate matter and bioccontaminant control.

The AR subsystem receives process air from the cabin ventilation system, purifies it, and returns

<table>
<thead>
<tr>
<th>Resource & logistics requirements</th>
<th>Crew & Crew Systems</th>
<th>CO2, moisture, & chemical and particulate contaminants; exercise loads</th>
<th>CO2, moisture, & chemical and particulate contaminants; exercise loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Support System</td>
<td>Equipment materials and operation; software interfaces</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
</tr>
<tr>
<td>Structural connections</td>
<td>Structural functional areas; structural safety; structural maintenance</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
</tr>
<tr>
<td>Structural areas</td>
<td>System reliability & status</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
</tr>
<tr>
<td>Structural maintenance</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
<tr>
<td>Ethanol management</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide reduction</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
<tr>
<td>Conditioning & management</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide reduction</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
<tr>
<td>Product processing</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
<tr>
<td>Oxygen generation & supply</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
<tr>
<td>Trace contaminant control</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
<tr>
<td>Particulate matter</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
<tr>
<td>Biological contamination control</td>
<td>Power Demand</td>
<td>Environmental Demand</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. A detailed interface diagram showing interfaces between the LSS and vehicle systems. Interfaces flow clockwise around the diagonal. Inputs are above the diagonal and outputs are below the diagonal.

Figure 3. A simplified interface diagram for the LSS architecture.
it to the cabin. The purification processes remove particulate matter and biocontaminants, trace chemical contaminants, and carbon dioxide. The process air fed to the AR subsystem may need to be conditioned for temperature and moisture content to allow for the moisture management and carbon dioxide removal equipment function properly and optimize component sizes. It may also be necessary for the process air to pass through trace contaminant control and particulate matter control equipment before being delivered to the core atmosphere purification processing equipment which manages moisture and removes carbon dioxide. The AR subsystem also receives water from the WRM subsystem to produce oxygen. In return, the AR subsystem returns moisture removed from the process air stream to the cabin as well as returns water produced by the carbon dioxide reduction process to the WRM subsystem via the cabin humidity control equipment.

Figure 4 shows that the carbon dioxide reduction process is central to the overall AR subsystem architecture and has two internal interfaces. One with carbon dioxide removal and one with oxygen generation. These interfaces supply the carbon dioxide and hydrogen feed gases and require process control coordination. To ensure proper operation over the mission duration, the CO₂ and H₂ fed to the carbon dioxide reduction process must meet specified purities and moisture loads. An interface specification for feed gas purities and moisture load must be developed to facilitate AR subsystem integration. The coordinated operational protocols between carbon dioxide removal, carbon dioxide reduction, and oxygen generation process equipment must also be defined as part of the assembly-level interface requirements.

Figure 4. A simplified interface diagram for the AR subsystem.

B. Water Recovery and Management Subsystem Interfaces

The WRM subsystem’s purpose is to recycle wastewater to provide water for crew consumption, crew hygiene, and to support other water consuming systems such as electrolysis-based oxygen generators, evaporative heat exchange processes, and EVA operations. As shown by Fig. 5 the components comprising the WRM subsystem are grouped into four assemblies managing the main process fluids of the system. These assemblies are the following:
1) Water recovery from urine.
2) Water recovery from process byproducts such as urine processing brine.
3) Water purification to potable standards.
4) Potable water supply management.
In order to achieve the first function, it is necessary to treat urine so that it remains stable throughout the recovery processes. Developing a suitable chemical is the subject of development for the notional WRM subsystem. The chemical is introduced at the point of urine collection in the Waste Management System (WMS) shown by Fig. 1. This defines an interface between the WRM subsystem and the WMS. Water is recovered from the pretreated urine by a primary urine processor. The second function is achieved via a secondary processor to recover water from the concentrated brine byproduct produced by the primary processor is necessary to improve the total water recovery for exploration missions. The WRM subsystem also receives water from cabin humidity control and AR subsystem carbon dioxide reduction processes which is processed along with other waste water streams by the third component—the water purification assembly. Defining the acceptable contaminant load in humidity condensate, the carbon dioxide reduction-produced water, and other waste water streams is necessary for controlling these interfaces as excessive loading can lead to undesirable process economics for the WRM subsystem. The third assembly purifies water recovered from urine, urine brine, humidity condensate, and AR subsystem processes to produce a potable water product. A biocidal chemical is added to the potable water product to inhibit microbial growth in downstream components and storage tanks. While chemical treatment is effective, disadvantages such as long-term efficacy, human toxicity, and safety must be addressed for future exploration needs. Similar considerations must also be given to stabilizing urine for treatment.

Each of the WRM subsystem’s core functions incorporates processes that may generate gaseous byproducts. Contaminants contained in these byproduct gases typically fall within SMAC limits and are candidate for venting to the habitable cabin volume. Attention must be given, however, to evaluating the impact this load has on the AR subsystem to determine whether treatment at the contaminant generation source is more economical compared to venting byproduct gases directly into the cabin.

C. Environmental Monitoring Subsystem Interfaces

The EM subsystem addresses principle environmental health monitoring functions associated with cabin atmospheric quality, water quality, and airborne and surface microbiology.26 Via monitoring, the LSS as well as the medical and environmental health communities ensure that key risks related to the cabin atmosphere, water quality, and microbial contamination. As part of the LSS, the EM subsystem monitors the cabin atmospheric composition, the airborne trace chemical contaminant load, combustion products, and potable water quality.27, 28 The EM subsystem architecture, therefore, provides specific functions depicted by Fig. 6 that include the following:

1) Monitor the cabin atmospheric constituent partial pressures including oxygen, nitrogen, carbon dioxide, water vapor, hydrogen, and methane.
2) Monitor the cabin trace chemical contaminant load.
3) Monitor for combustion products such as carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen chloride (HCl), and hydrogen fluoride (HF).
4) Monitor potable water quality.
5) Monitor airborne and potable water microbial contamination.
Figure 6 shows these functions require interfaces with the AR and WRM subsystems that allow for sample collection and return, particularly for water samples. Data transfer from EM components to the AR and WRM subsystems may exist as part of an autonomous LSS control approach. For instance, during a crew exercise period when oxygen consumption and carbon dioxide production are high, the EM subsystem’s signal may be used to increase oxygen production and carbon dioxide removal rates to smooth major constituent partial pressure fluctuations in the cabin. Likewise, during sleep periods with low oxygen consumption and carbon dioxide production, the AR subsystem can use the EM subsystem data to match the demand. Similarly, as the EM monitors the cabin trace contaminant load, the water processing system may be able to anticipate variations in the contamination load in humidity condensate to better manage expendable resources. Likewise, monitoring the potable water quality can allow for automated compensation for additional processing to comply with specifications.

![Figure 6. A simplified interface diagram for the EM subsystem.](image)

IV. Interfaces with Supporting Infrastructure

Important interfaces for the exploration LSS include electrical power, avionics and software, thermal control, and structures. These are important infrastructure support areas for the LSS and all vehicle systems. Resource allocations for each technical area can dictate the LSS capabilities and influence the system’s design. The following summarizes aspects of these technical interfaces as they relate to the exploration LSS.

A. Electrical Power

The electrical power interface is described by the Mars Design Reference Mission 5.0 to be 120 VDC. This power voltage is used aboard the ISS and, therefore, developmental work is being conducted using a 120 VDC source with voltage conditioning at the assembly and component levels as needed. The total power available is 22 kW; however, details regarding the LSS allocation are not yet specified.29

B. Avionics and Software

Avionics and software are necessary for the LSS to function properly. Information and insight for the crew and mission controllers to monitor the LSS and interfaces for the crew to adjust to mission needs are vital. The avionics and software architecture necessary for exploration missions is envisioned to possess standardized capabilities and interfaces that can be tailored for specific missions and vehicle platforms within a capability-driven exploration mis-
C. Thermal Control

The LSS consists of components that will produce excess thermal energy. This energy is handled both directly and indirectly via different cooling strategies. Direct liquid cooling via heat exchangers and cold plates as well as indirect cooling by thermal energy dispersion into the cabin environment are options. Ultimately the excess thermal energy is either recovered for re-use in LSS processes or rejected to space via radiators. The methods and specific interfaces for thermal control constitute a not yet defined trade space for the LSS equipment architecture and physical layout.

D. Structural Interfaces for Maintainability

An LSS suitable for a journey to Mars and back must enable in-flight maintenance and reduce the need to store large quantities of spare parts. In-flight maintenance is necessary because the on-orbit replaceable unit (ORU) logistics and ground-based maintenance depot developed for the ISS is unsuitable for deep space exploration missions. The structural interfaces between the LSS and the habitat must not only accommodate launch and transportation loads but also must enable the crew to access components and limited life items for routine and unscheduled maintenance. An open physical layout that enables in-flight maintainability at an appropriate component level is required. By studying component replacement and maintenance aboard the ISS, the exploration LSS architecture can gain insight regarding what types of components require the most frequent maintenance. A physical layout and equipment packaging design that enables in-flight maintenance can result from this insight. As well, a targeted effort to improve component reliability can be developed. Through these efforts, a strategy for an in-flight logistics and maintainability model can be developed. An initial step is developing an LSS assembly- and component-level layout with attention to structural interfaces that allow easy access to components for repair and replacement.

E. Considerations for Component Commonality

Identifying and defining common aspects among interfaces is essential to accommodating LSS equipment components and assemblies developed by different equipment suppliers and international partners. This will enable a hassle free integration without the need to reworks or modifications to the original subsystem. Electrical power and avionics interfaces are two common technical areas discussed above. It was noted previously that the Mars Design Reference Mission assumes a 120 VDC electrical power distribution system for a deep space habitat. This is a legacy interface since the ISS U.S. Segment uses a 120 VDC electrical power distribution bus. The avionics interfaces in general and data interfaces in particular are more complicated and deserve in depth study. To this end, a team at NASA is considering a modular avionics architecture that includes the data interface. The team is currently developing figures of merit (FOMs) to evaluate different options which include the following:

1) Affordability—addresses cost in the form of base cost, launch mass, additional development cost, etc.
2) Maintainability—addresses how simple it is to keep the system healthy, functioning, and up-to-date.
3) Interoperability—addresses how well the system interfaces with others in a manner that requires little or no knowledge of the unique characteristics of those units.
4) Performance—addresses how well the system does the job that it is intended to do.
5) Robustness—addresses how well the system mitigates, detects, and recovers from faults.
6) Scalability—addresses how easily the network of systems can be extended to include new systems.
7) Security—addresses how well the system prevents unauthorized actions.

These FOMs offer detail for the broader FOMs for the Mars Design Reference Mission which include safety and mission success, effectiveness, and affordability. It is anticipated that this type of developmental focus will be extended to other exploration technology development areas to identify a common set of components, for example avionics cards, sensors, valves, pumps and other equipment items that can play key roles in developing the maintainability philosophy for the future LSS. Even though the current emphasis is on LSS, no doubt that these studies will be extended to other spacecraft systems as well.
V. System Resource Allocations

Early in the mission development cycle the LSS resource allocations for mass, electrical power, volume, thermal control, data rates, and many other technical areas are not yet specified. An assessment of a deep space habitat describes a strategy for a 1000-day mission by six crewmembers that provides 11803 kg for the LSS. Within this allocation the AR subsystem is allocated 1848 kg and the WRM 5971 kg. Under a more aggressive strategy to reduce mass, the LSS mass allocation is 9114 kg with the AR subsystem mass of 1651 kg and a WRM mass of 3687 kg. The consumables for the LSS are allocated 1373 kg under the primary strategy and 1345 kg under the aggressive strategy.15

VI. Preliminary System Hazards Summary

A preliminary review of the notional LSS indicates hazards similar to those associated with the ISS LSS. Hazardous accumulation of contaminants, hazardous fluids, combustible gases, high temperatures and pressures, and cabin atmospheric leakage paths to space vacuum are evident.

Among the AR subsystem hazards, addressing combustible gas leakage from oxygen generation and carbon dioxide reduction equipment must be addressed and appropriate controls implemented. As well, materials of construction used in the oxygen generation assembly must be compatible with high purity oxygen as well as high purity hydrogen. Components within the trace contaminant control and carbon dioxide assemblies operate at temperatures ranging from 200 °C to 400 °C and some carbon dioxide reduction processes operate above 500 °C. Therefore, it is necessary to prevent thermal runaway and also prevent crew contact with hot surfaces and process gas streams.

Hazards within the WRM subsystem are associated with chemicals used for urine stabilization and potable water antimicrobial treatment. The low pH required for urine stabilization to prevent precipitation presents a hazard to the crew and limits the life of the wetted components. This chemical is also a corrosive acid and some formulations have carcinogenic properties. Due to the hazardous nature of urine pretreatment chemical and the pretreated urine and, likewise, urine brine, special care must be taken to properly contain this fluid throughout all parts of the process, including during maintenance.

Likewise, the long-term efficacy, human toxicity, and safety precautions necessary for potable water antimicrobial treatment must be considered. Iodine poses a health risk at large doses. This is mitigated by removing the iodine at the point of use. Work is being done to eliminate this hazard by choosing an antimicrobial chemical that can perform its function at levels that are safe to ingest while maintaining good efficacy.

Finally, inherent to any water system is the hazard posed by the large quantities of water in microgravity. Without a significant gravity vector, a water leak could present a suffocation/drowning hazard to the crew. Large quantities of water can also damage electrical equipment.

VII. Conclusion

The general features and guiding functional requirements for a notional LSS that is suited for meeting the challenges of long duration missions of a capability-driven space exploration framework were presented. The architecture was assessed relative to top-level interfaces at the system and subsystem levels. The interfaces with supporting infrastructure were presented. Among the most challenging is the need for an early, open source software architecture that incorporates autonomous mission control features. The LSS physical layout and structural interfaces must also enable easy access to components for in-flight maintenance. An early hazard analysis indicates hazards similar to those associated with the LSS aboard the ISS.

Acknowledgements

This work is conducted by the Life Support Systems Project under the sponsorship of NASA’s Advanced Exploration Systems Program.

Bibliography

The following documentation supplements the requirements and guidance found in the NASA Space Flight Human System Standard, the Human Integration Design Handbook, and the referenced documents.

International Conference on Environmental Systems

References

1National Space Policy of the United States of America, June 28, 2010, p. 11.

