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The United States Atmosphere Revitalization life support system on the International 

Space Station (ISS) performs several services for the crew including oxygen generation, 

trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen 

recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein 

CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The 

water product is purified in the Water Purification Assembly and recycled to the Oxygen 

Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a 

theoretical maximum oxygen recovery from CO2 of ~54% due to the loss of reactant 

hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma 

Pyrolysis Assembly (PPA) technology, developed by Umpqua Research Company, provides 

the capability to further close the Atmosphere Revitalization oxygen loop by recovering 

hydrogen from Sabatier-produced methane. A key aspect of this technology approach is the 

need to purify the hydrogen from the PPA product stream which includes acetylene, 

unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale 

hydrogen separation systems were delivered to NASA for evaluation. These included two 

electrolysis single-cell hydrogen purification cell stacks developed by Sustainable 

Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for 

sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal 

hydride produced by Hydrogen Consultants, Inc. Here we report the results of these 

evaluations to-date, discuss potential architecture options, and propose future work. 
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Nomenclature

 

AR = Atmosphere Revitalization 

C2H2 = Acetylene 

C2H4 = Ethylene 

C2H6 = Ethane 

CDRA = Carbon Dioxide Removal Assembly 

CH4 = Methane 

CM = Crew Member 

CO = Carbon Monoxide 

CO2 = Carbon Dioxide 

H2 = Hydrogen 

H2O = Water 

ISS = International Space Station 

OGA = Oxygen Generation Assembly 

PPA = Plasma Pyrolysis Assembly 

SI = Sustainable Innovations, LLC 

SmLPM = Standard milliliters per minute 

V = Volts 

W = Watts

 

I. Introduction and Background 

IFE support is a critical function of any manned space vehicle or habitat. Atmosphere revitalization (AR) 

technology on the International Space Station (ISS) provides a breathable atmosphere and comfortable living 

environment for the crew. Prior to 2011, operational functions of the AR system included temperature and humidity 

control, oxygen generation, trace contaminant control, and carbon dioxide (CO2) removal. The CO2 removed from 

ISS was vented overboard resulting in a loss of 92% of the required respiratory O2. To resupply this O2, water was 

delivered from Earth and electrolyzed in the Oxygen Generation Assembly (OGA). In 2009, a Sabatier CO2 

Reduction system was launched to ISS and became fully operational in June 2011. The Sabatier system interfaces 

with the OGA and the CO2 Removal Assembly (CDRA). Carbon dioxide from the CDRA is compressed and stored 

in tanks until the Sabatier is ready for operation. Hydrogen is produced during the electrolysis of water in the OGA. 

When the OGA is operational and CO2 is available in the storage tanks, the Sabatier system is activated and 

produces methane and water via the Sabatier reaction shown in Eq 1.  

 

Sabatier Reaction                                     CO2 + 4H2 ↔ 2H2O + CH4                                                                         (1) 

 

The water is condensed, separated, and purified in the Water Processing Assembly and recycled to the OGA to 

continue producing O2 for the crew. The CH4, saturated with water vapor from the condensation process, is vented 

overboard as a waste product. The addition of the Sabatier reactor to the AR system results in a theoretical recovery 

of ~54% O2 from CO2 and is limited only by the loss of H2 in the form of vented CH4 and the loss of uncondensed 

water vapor in the CH4 stream. The Sabatier reactor serves to reduce the required water resupply from Earth from 

~0.891 kg H2O/crew member(CM)-day to ~0.459 kg H2O/CM-day. For long-duration missions beyond Low Earth 

Orbit, such as Martian transit and surface missions, even more recovery is needed to limit the cost and logistics of 

resupply. NASA is currently targeting technologies that achieve 75-90% O2 recovery from metabolic CO2.1 One 

approach to achieve additional recovery is to recycle hydrogen by adding a methane post-processor to the Sabatier-

based architecture. NASA has been exploring the Plasma Pyrolysis Assembly (PPA) for this purpose2,3.  The PPA 

uses a magnetron to generate an H2/CH4 plasma targeting Sabatier CH4 conversion to hydrogen and acetylene 

(C2H2) as shown in Eq. 2. Secondary reactions with CH4, as shown in Eqs. 3-5, and reactions with residual water 

vapor as shown in Eqs 6-7, also occur in the PPA resulting in an effluent mixture containing H2, unreacted CH4, 

product C2H2, and trace quantities of H2O, carbon monoxide (CO), ethylene (C2H4), ethane (C2H6), and solid carbon 

(C).   

 

Targeted PPA Reaction                                     2CH4 ↔ 3H2 + C2H2                                                                          (2) 

CH4 Conversion to Ethane                                2CH4 ↔ H2 + C2H6                                                                            (3) 

CH4 Conversion to Ethylene                             2CH4 ↔ 2H2 + C2H4                                                                          (4) 

CH4 Conversion to Solid C                          CH4  ↔ 2H2 + C(s)                                                                           (5) 

CO Production                                          C(s) + H2O ↔ CO + H2                                                                              (6) 

CO Production                                        CH4 + H2O  ↔ CO + 3H2                                                                           (7)
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When the H2 recovered in the PPA product is recycled back to the Sabatier, and the Sabatier is operated at an 

H2:CO2 ratio of 4.25, a theoretical O2 recovery of 91.3% from CO2 is possible. This further reduces the required 

water resupply to 0.141 kg H2O/CM-day. However, in order to recycle H2 back to the Sabatier, the hydrocarbon 

byproducts must be removed to prevent fouling of the Sabatier catalyst. In 2015, four sub-scale hydrogen separation 

systems were delivered to NASA for evaluation for this purpose. These included two electrolytic single-cell 

hydrogen purification cell stacks developed by Sustainable Innovations, LLC (SI), a sorbent-based hydrogen 

purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company 

(Umpqua), and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc.  

 Two of these technology options have been tested at NASA Marshall Space Flight Center and evaluated for 

relative H2 purification performance, durability, and complexity. Here we report the results of these evaluations, 

discuss potential architecture options, and propose future work.  

II. Hardware and Test Configuration 

Four systems were delivered to NASA MSFC for evaluation in an Oxygen Recovery test stand. Two have these 

have been tested to-date including the SI Basic Cell Stack and the SI Advanced Cell Stack. A description of the 

hardware and the testing configuration is provided below.  

A. Hardware 

 

1. Sustainable Innovations Electrochemical H2 Separation 

The SI cell stacks are both electrochemical H2 separation cell 

stacks. Electrochemical hydrogen separation provides a means of 

selectively isolating hydrogen from a mixture of gases. In 

electrochemical separation, hydrogen is electro-oxidized to 

protons and electrons, and the resulting protons are electro-

reduced in another chamber, combining them with the electrons, 

thus producing purified hydrogen. The basic technology is well 

developed, but prior to 2014, was not directly applicable to the 

PPA product stream due to the relatively significant concentration 

of carbon monoxide in the product stream. At typical operating 

temperatures, the carbon monoxide would preferentially adsorb on 

the catalytic electrodes in the cell, and interfere with their ability 

to oxidize hydrogen. The carbon monoxide would desorb from the 

electrodes at temperatures above 150°C, but the acidic polymer 

that it typically uses as the electrolyte is not serviceable at this 

temperature. Through a Phase I and Phase III Small Business 

Innovative Research contract, Sustainable Innovations worked to 

identify and develop electrolyte materials tolerant to operating at 

temperatures that are adequate to thermally desorb the carbon 

monoxide—thus enabling electrochemical hydrogen separation to 

effectively purify the hydrogen in the PPA product stream. During 

this effort, two single-cell stacks were developed using unique materials: a Basic Cell Stack, shown in Figure 1, and 

an Advanced Cell Stack. The materials and design for each are proprietary and will not be discussed in detail here. 

However, both were covered in Omega heat wrap and insulated using Unifrax (Tonawanda, NY) Fiberfrax S 

insulation to control stack temperature. The stack was operated using a Sorensen DCS20-60 DC power supply.  

B. Test Configurations 

1. Stand-Alone Operation 

Of the four technology options, only the metal hydride involved stand-alone operations. Other metal hydrides, 

such as LiH4 and MgH25, have been shown to react with acetylene to form metal-carbides under certain conditions. 

Given the unstable nature of acetylene, and the lack of available literature data on effects of C2H2 exposure on the 

LaNi4.6Sn0.4 metal hydride, a stand-alone safety test was conducted. A test stand was prepared at NASA MSFC’s 

Explosives Testing Facility. This area was designed for explosives and propellant testing and provided the necessary 

isolated operation and safety controls to mitigate any violent decomposition event that might occur during testing. 

 
Figure 1. Sustainable Innovations Basic 

Cell Stack. 
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The metal hydride was first charged with H2 and regenerated to demonstrate nominal thermal and pressure profiles. 

The metal hydride was then exposed to a gas mixture containing 7% C2H2, 1% CH4, and 92% H2. This composition 

represents a “worst case” C2H2 exposure the metal hydride would see during operation with the PPA. Vessel 

temperatures and pressures were monitored to compare with the baseline H2 adsorption data. 

2. PPA + H2 Purification Operation 

Each cell stack was integrated with the 2nd Generation PPA for initial evaluation. During this testing, the PPA 

was operated using compressed ultra-high purity CH4 and H2. The PPA was operated at a 1-CM rate of CH4 

production and an H2:CH4 ratio of 4:1. The reactor was maintained at ~52 torr with an applied microwave power of 

550W. This resulted in a PPA effluent containing H2, C2H2, unreacted CH4, ethylene, and ethane. Operation in this 

manner was notably devoid of CO and water vapor. During testing, 100 standard milliliters per minute (SmLPM) 

slip stream of the PPA effluent was diverted to the stack with flow controlled using a mass flow controller. The 

resulting H2 product was evaluated for purity and the process effluent was tested to identify vented composition  

3. SDU + PPA + H2 Purification Operation 

Following PPA + H2 Purification testing, a Sabatier Development Unit (SDU), designed by Precision 

Combustion, Inc., was integrated upstream of the PPA. The SDU was operated such that 350 SmLPM CH4 was 

produced with no unreacted CO2. This resulted in a methane product containing 80 mol% (dry basis) hydrogen. 

Water vapor content was maintained at a dew point of 31°C. The PPA was operated identically to PPA + H2 

Purification testing. Because the PPA was fed CH4 containing water vapor, the resulting effluent contained all 

previously indicated components. Gas composition data were taken as in the PPA + H2 Purification testing.   

III. Results and Discussion 

Two of the four H2 purification systems were tested at NASA MSFC in 2015 and early 2016. Each technology 

was evaluated when integrated with the PPA alone, and when integrated with both an SDU and the PPA. The results 

of this testing and a discussion of its relevance are provided below.  

Sustainable Innovations, LLC delivered two cell stacks to NASA MSFC in 2015: the SI Basic Cell Stack and the 

SI Advanced Cell Stack. A key finding of all testing was that the H2 purified by the stacks was found to contain no 

contaminants within the measurable limits of the µGC. This level of purity is highly desirable for recycling to a 

Sabatier system or PPA with minimal concern for contamination. Differences in performance were observed based 

on the stack membrane materials themselves, the temperature at which the stack was operated, and the presence of 

water vapor and CO in the stack inlet gas stream.  

A. Basic versus Advanced Cell Stack H2 Separation Performance 

Several data points were taken 

during operation of each cell 

stack. These data points varied 

gas feed from the PPA to the 

stacks, stack temperature, inlet 

composition, and applied voltage. 

For six of the collected data 

points, the Basic and Advanced 

cell stacks were held under 

identical conditions. Percentage 

of H2 separation was calculated 

based on the measured H2 at the 

cathode versus the known H2 feed 

to the cell stack anode. As can be 

seen in Figure 2, the Basic cell 

stack demonstrated a greater 

percentage of H2 separation than 

the Advanced cell stack in all 

cases. This data correlates well 

with that reported by the cell 

stack vendor, Sustainable 

Innovations, LLC where the Basic 

 

 
 

Figure 2. H2 separation performance comparison between Basic and 

Advanced cell stack. 
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stack demonstrated better H2 separation performance than the Advanced stack. SI attributed this observed difference 

in performance to the relative effectiveness of the membrane material used in each cell stack.  

B. Process Effluent Composition 

In addition to measuring H2 

separation across each stack, gas 

composition data was taken for 

the anode inlet (feed from the 

PPA), anode outlet (H2 lean) and 

the cathode outlet (separated H2 

product).  As mentioned above, 

the separated H2 product was 

pure beyond the evaluation 

means of the GC. The anode 

inlet composition varied for 

several reasons. First, when the 

PPA operates, the outlet 

composition changes slightly 

over time due to byproduct 

carbon formation in the PPA 

reactor. High reflected power 

within the PPA reactor is an 

indicator of excessive carbon 

build-up. When this occurs, the 

PPA is regenerated. However, 

several hours of operation occur 

between regenerations. This 

provides several hours over which the PPA outlet composition changes. The PPA outlet composition will also vary 

based on integration with the Sabatier. When Sabatier effluent is fed to the PPA, the PPA effluent can vary further 

due to the presence of water vapor and CO in the gas feed. Average PPA effluent compositions are shown in Figure 

3. As can be seen from the graph, the presence of water and CO in the PPA feed results in high CO concentration 

and inhibits C2H2 production from CH4.  

Given these variations in inlet composition, the effluent from the anode would be expected to mirror the relative 

compositions of the gases with the exception of H2. However, during testing of both the Basic and Advanced cell 

stacks, the outlet composition from the anode was considerably different than anticipated. In all cases, high levels of 

C2H4 and C2H6 were observed with minimal or no C2H2. The overall chemistry of formation of C2H4 and C2H6 from 

CH4 is shown in equations 3 and 4 above. However, the actual process of producing these hydrocarbons involves 

free radical intermediates. As shown in Eq. 8, CH4 forms CH3* free radicals which then recombine to form C2H6. 

Similarly, C2H6 is converted to C2H4 and C2H4 is converted to C2H2.  The reverse reactions also occur providing a 

mechanism for hydrogenation of C2H2 to the other hydrocarbons.  

 

Ethane Formation from CH4         CH4 + CH4 ↔ CH3* + CH3* + H* + H*  ↔ C2H6 + H2                                      (8) 

 

While hydrogenation of C2H2 does not pose any safety concerns, it is highly detrimental to a proposed Sabatier + 

Plasma Pyrolysis Assembly architecture. Conversion of metabolic CO2 to C2H2 results in a theoretical maximum of 

~86% O2 recovery from CO2, conversion of CO2 to C2H4 results in a theoretical maximum of only ~72%, and 

conversion to C2H6 results in a theoretical maximum of only ~61.5%. In order to meet NASA’s mission targets, a 

minimum of 75% O2 recovery is required. Conversion to C2H4 or C2H6 will not meet this target, making a Sabatier + 

PPA architecture inadequate for future long-duration manned missions. Thus, in order to be considered for the 

architecture, the cell stacks must not hydrogenate C2H2.  

 Hydrogenation products from C2H2 were observed in the effluent of both cells. Three theories were proposed as 

possible causes of the observed phenomenon in the stacks. First, in previous testing, the cell stacks were shown to 

produce byproducts at lower temperatures. If this were the case, raising the temperature of the stack could decrease 

the hydrogenation reactions. Second, it was possible that excess H2 was available during separation. Insufficient 

voltage to move the H2 across the membrane would result in a net H2 surplus at the surface of the membrane. This 

localized H2 combined with the voltage applied to the cell could have been contributing to the hydrogenation of the 

 
Figure 3. Stack inlet (PPA effluent) composition as a function of level of 

integration. 
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C2H2. Finally, platinum was used for electrodes within the cell stack. Platinum has been shown to catalyze the 

hydrogenation of C2H2 under vastly different circumstances, but the presence of the metal under the conditions may 

have contributed to the observed results.   

 Testing was first conducted 

to determine the effect of stack 

temperature on the relative 

hydrogenation of C2H2. Figure 

4 shows the results of data 

points collected on the 

Advanced cell stack. All 

conditions for each data point 

were identical with the 

exception of temperature. As 

can be seen, the higher 

temperatures resulted in both 

more hydrogenation of the 

C2H2 and of the production of 

more hydrogen-rich molecules 

(e.g. CH4).  Operation of the 

stacks at temperatures lower 

than 160°C might result in a 

marked decrease in 

hydrogenation effects. 

However, the high temperature 

is critical for the H2 separation 

technology due to the CO in 

the effluent stream. At lower temperatures, CO poisons the membrane and H2 separation is compromised. This 

makes operation at a lower temperature unfeasible for a long-term solution.  

 Testing was then conducted to explore the effect of overvoltage on hydrogenation based on the theory that 

excess H2 at the surface of the membrane was contributing to the conversion of the C2H2. For this test, the total flow 

of PPA effluent to the cell stack anode was limited to very low flow rates to achieve near 100% H2 separation (69 

SmLPM, 60 SmLPM, and 48 SmLPM) and the voltage varied (0.00V, 0.16V, 0.30V, 0.46V, and 0.60V). The results 

show an interesting phenomenon. First, regardless of the flow rate and the voltage tested, all of the C2H2 was 

hydrogenated to some degree, 

resulting in no measurable 

C2H2 in the stack outlet stream. 

Second, regardless of the flow 

rate and the voltage tested, the 

total quantity of C2H2 

converted to CH4 did not 

change, as seen in Figure 5. 

The voltage did, however, 

appear to have an effect on the 

degree to which C2H2 was 

converted to C2H4 and C2H6 as 

can be seen in Figure 6 and 

Figure 7, respectively, but was 

independent of flow rate. An 

increase in voltage reduced the 

total hydrogenation as 

evidenced by the increase in 

C2H4 and relative decrease in 

C2H6 as voltage increased. 

While this would be a 

promising result if the goal 

were to simply decrease 

 
Figure 4. Effect of temperature on C2H2 hydrogenation. 

 

 
Figure 5. Acetylene conversion to methane in Advanced cell stack as a 

function of voltage and anode feed rate. 
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hydrogenation, the fact that all of the C2H2 is still being converted in the process implies that an overvoltage alone 

will not eliminate the problem.   

 A third possibility is that the 

Pt catalyst in the stack is 

causing the observed 

hydrogenation. If this were the 

case, two options might be 

taken to reduce or eliminate the 

problem. First, the catalyst 

material could be changed. 

Unfortunately, other catalysts 

known to be H+ conductors 

including Palladium and Silver 

are not viable options for this 

application. Palladium, like Pt, 

is a known hydrogenation 

catalyst. Silver, on the other 

hand, is known to react 

violently with C2H2. The second 

option would be to limit the 

mass transport of C2H2 to the 

catalyst surface. This might be 

accomplished through the use 

of a gas diffusion layer of 

greater thickness. The thicker 

layer would limit mass transport 

of the larger molecules (e.g. 

C2H2) to the surface, while 

allowing the smaller molecules 

(e.g. H2) ready access to the 

catalyst surface.  In an effort to 

further understand the 

phenomenon, the Basic Cell 

Stack was returned to SI for 

evaluation and refurbishment 

with a thicker gas diffusion 

layer.  

 Finally, during the course of 

testing, it was discovered that 

the presence of H2O and/or CO 

in the gas stream limited 

hydrogenation of C2H2. This 

can be seen in Figure 8, where 

residual C2H2 was observed 

when water and CO were 

present in the feed stream. 

While it is not yet clear what is 

causing this phenomenon, it is 

possible that CO, known to adsorb to the catalyst surface, blocks reaction sites that would otherwise be used to 

hydrogenate C2H2. If this is the case, one could assume that H2 separation would also decrease with the reduced 

reaction sites. This is, in fact, what was observed. If water vapor plays a role in this phenomenon, it is unlikely that  

water is electrolyzed at the catalyst surface given the low voltages. However, protons are known to be generated at 

the anode, and if water is present, hydronium ions (H3O+) are likely formed and surrounded by other water 

molecules. In this scenario, there is no driving force to reduce C2H2 or any other species. This may help explain the 

relatively lower C2H2 hydrogenation. 

 

 
Figure 6. Acetylene conversion to ethylene in Advanced cell stack as a 

function of voltage and anode feed rate. 

 

 
Figure 7. Acetylene conversion to ethane in Advanced cell stack as a 

function of voltage and anode feed rate. 
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IV. Architectural Options 

 Three primary options for hydrogen separation technology to be used in conjunction with the PPA are being 

considered. These options include the Sustainable Innovations electrochemical cell stacks, the Umpqua sorbent 

based H2 separation system, and a system based on metal hydrides.  The system architectural requirements for these 

three systems are discussed below.    

A. Sustainable Innovations Basic and Advanced Cell Stacks 

Figure 9 shows the general system architecture required to incorporate an electrochemical hydrogen separation 

cell stack into the PPA system architecture.  This is by far the simplest system architecture since the cell stack would 

operate continuously, in contrast to the batch-processing necessary for a sorbent or metal hydride based system.  

Continuous operation would eliminate the valves necessary for cycling the sorbent or metal hydride beds.  Also, 

since the cell stack would be capable of sourcing hydrogen at pressures well above the minimum required by the 

CRA and PPA no compressor is necessary in the system. The cell stack membranes are compatible with the water 

vapor in the PPA effluent stream, and in fact require a trace amount of water vapor for proper operation, so would 

 
Figure 8. Effect of water vapor and CO on hydrogenation of C2H2. 
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Figure 9. Electrochemical cell stack system architecture. 
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not require a desiccant stage.  The use of which would, of course, mean that some water vapor would be lost to 

space. 

B. Umpqua Sorbent-Based H2 Purification 

Figure 10 shows the general architecture required for a sorbent-based hydrogen separation architecture. A set of 

two sorbent beds, one adsorbing and one thermal/vacuum desorbing, would be required for continuous operation.  

The Umpqua concept uses microwaves instead of conventional heaters to speed heating of the sorbents during 

regeneration. Zeolite sorbents would capture acetylene and allow hydrogen and any residual methane to pass into the 

recycle loop. The passage of residual methane is actually beneficial since it would allow for the re-processing of any 

methane that was not converted to acetylene during the first pass through the PPA. A sorbent-based architecture 

would require a pressure controller to maintain pressure in the sorbent bed during operation, an accumulator tank to 

act as a buffer volume to balance process flows, and a compressor to provide sufficient pressure in the sorbent beds 

for adequate adsorption. 

Additionally, since zeolite sorbents have a high affinity for water vapor, a desiccant stage would be needed 

upstream of the zeolite beds. This desiccant stage could be integrated into the inlet side of the zeolite beds, which 

would add minimal complexity to the system architecture but would cause a net loss of water vapor since it would 

be desorbed to space vacuum when the beds were regenerated. The desiccant stage could also be designed as 

separate beds, which would add system and operational complexity but would allow for water vapor to be returned 

to the cabin during regeneration.   

It should also be considered that a dual swing sorbent bed system has considerable valving challenges, which are 

not shown schematically in Figure 10.  Manifolds and valves must be provided to effectively isolate and cycle the 

beds between operation and regeneration modes. The dust produced by swing-bed sorbent systems can be a 

significant operational issue for valves as can be seen in the operational history of the Carbon Dioxide Removal 

Assembly. 

 

C. Metal Hydride H2 Purification and Storage 

Figure 11 shows the general architecture required for a metal hydride based hydrogen purification architecture.  

In a metal hydride architecture PPA effluent would flow to a metal hydride bed that would capture hydrogen and 

allow all other constituents to flow out to space vacuum. A second bed would be heated to supply hydrogen to the 

hydrogen recycle loop. A third bed would be exposed to space vacuum at elevated temperatures to condition the bed 

for further hydrogen processing3. A buffer volume would still likely be necessary in this architecture but the volume 

could be smaller and lower pressure than the volume needed in the sorbent-based architecture. No compressor would 

be needed since the thermal desorption of hydrogen from a metal hydride can supply hydrogen at the pressure 

necessary for the operation of the PPA and CRA. Valve and manifold complexity would be similar to the sorbent 

system, however, it is unlikely that there would be dusting issues from the metal hydrides. Heating and cooling the 

metal hydrides would be less challenging than sorbents due to their higher thermal conductivity and lower volume.   
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Figure 10. Sorbent-based H2 separation architecture. 
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The presence of water vapor present in the PPA effluent stream must still be addressed in metal hydride 

architecture.  Water-tolerant metal hydrides may be available and would simplify the system architecture but would 

allow water vapor loss to space vacuum.  A separate desiccant system could be incorporated up-stream of the metal 

hydride system, which would allow water vapor to be returned to the cabin albeit at the cost of power and system 

complexity. 

V. Future Work 

Four technologies were identified as potential solutions for H2 separation and recycling in a Sabatier post-

processing O2 recovery architecture. Two of these technologies have been tested. Future work will include a 

comparable evaluation of the Umpqua H2 Separation system and the metal hydride. Initial findings of the 

Sustainable Innovations, LLC cell stacks show the capability to separate nearly 100% of the H2 fed to the stack and 

extremely high H2 product purity. However, the stacks also demonstrate hydrogenation of PPA product C2H2 

yielding a lower architectural O2 recovery efficiency. Ongoing efforts will seek to identify methods to reduce or 

eliminate the hydrogenation of C2H2 while maintaining H2 separation and product purity.  
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Figure 11. Metal hydride separation architecture. 

 


