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ABSTRACT  

The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a 

total of 18 4K x 4K devices.  The project has adopted a system-level approach to detector control and data acquisition 

where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal 

integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure 

that the intrinsic detector noise is the limiting factor for system performance.  For WFIRST, the detector arrays operate 

at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and 

the main data processing electronics are at the ambient temperature of the spacecraft, notionally ~300 K.  The new ASIC 

is the main interface between the cryogenic detectors and the warm instrument electronics.  Its single-chip design 

provides basic clocking for most types of hybrid detectors with CMOS ROICs.  It includes a flexible but simple-to-

program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-

dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are 

connected to the nearby detectors with a short cable that can provide thermal isolation.  The interface to the warm 

electronics is simple and robust through multiple LVDS channels.  It also includes features that support parallel 

operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by 

a single chip. 
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1. INTRODUCTION  

Modern generation large astronomy focal plane arrays (FPAs) place stringent demands on the control and data 

acquisition electronic support systems.  Most of the detectors used in these FPAs require cryogenic operation, and 

present interesting signal integrity and thermal isolation trades and challenges.  At one extreme, a solution for hybrid 

detectors is to incorporate ever-increasing functions into the Read-Out Integrated Circuit (ROIC).  Using modern CMOS 

designs, these ROICs can be made to include all control and even data acquisition (analog-to-digital conversion, ADC) 

functions, providing a true photons-to-bits capability in a single device.  However, the additional power dissipation at the 

cold detector may present an undesirable system-level thermal trade.  At the other extreme, for small numbers of 

detectors, it is possible to use only electronics at the warm ambient temperature of the instrument with a relatively 

simple and low-power ROIC.  However, this approach requires extreme care in interconnect design since the main 

thermal isolation needs to ensure signal integrity for very low-level analog signals over potentially large distances. 

The Wide-Field Infrared Survey Telescope (WFIRST), which NASA is planning to launch in the early 2020’s, is the 

next large space astrophysical observatory after the James Webb Space Telescope (JWST).  WFIRST entered Phase A of 
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development in early 2016. The main imaging camera, the Wide-Field Instrument (WFI) will use a mosaic of 18 4K x 

4K format near-IR detectors to conduct the surveys required for cosmology and exoplanet (microlensing) studies1.  This 

will be the largest infrared focal plane flown on a NASA mission, and presents interesting engineering challenges in 

material selection, thermal design, and electrical architecture.  The material for the mosaic plate and the detector 

packages is currently Sandvik Osprey CE6, chosen for its low mass, high thermal conductivity, and mechanical stability.  

The detector operating temperature of 90 to 100 K is maintained by an ultra-low vibration reverse-Brayton cycle 

mechanical cryocooler.  The electrical architecture is discussed further in the body of the paper, with a focus on the 

custom ASIC (Application-Specific Integrated Circuit). 

There are a few additional detectors planned for the mission in the Auxiliary Guider and the Integral Field Channel 

within the WFI.  These may or may not use the same architecture, depending on the result of on-going trades.  A second 

scientific instrument, the exoplanet coronagraph, will have a silicon-based detector and will likely use a different 

architecture1. 

1.1 Electrical Architecture Design 

For the electrical architecture, we want to maximize signal integrity while simultaneously minimizing the load to the 

thermal system.  The adopted approach is based on two driving principles: 1) control and analog-to-digital conversion is 

pushed into components close to the detector to maximize signal integrity, and 2) processing functions are performed at 

the highest allowable temperatures, simplifying the system-level thermal design by not cooling components that do not 

require such cooling to function.  Performance wise, the overall system shall not degrade the performance of the basic 

detectors by more than 10%.  This is obviously dependent on the detectors used, and the baseline for the design is the 

Teledyne Imaging Sensors H4RG-10 ROIC with a 2.5 m cutoff HgCdTe material.  The thermal design provides ample 

margin for the 90 to 100 K operating temperature of the detectors while still supporting an operating temperature of 150 

to 180 K for the cold electronics.  The bulk of the processing will occur in the instrument (warm) Focal Plane 

Electronics which are at the ambient instrument temperature of ~300 K. 

The cold electronics control and acquire data from the detectors.  This design choice minimizes the number of wires (and 

thus the parasitic thermal loading) between the detectors and the warm electronics.  More importantly, low noise video 

signals do not need to be transmitted over large distances and through several thermal zones. 

The warm electronics control higher-level focal plane operation.  It is responsible for configuring the ASICs as well as 

overall focal plane synchronization and commanding of the 18 distinct detectors and their cold electronics.  

Communication between the cold and warm electronics uses multiple LVDS (Low-Voltage Differential Signaling) lines.  

Conditioned power for the ASICs is also provided by the warm electronics. 

We are aware of two other ASICs that could perform similar functions to those required for WFIRST.  We elected to 

create a new design based on our perception of the shortcomings of these other devices. 

The Teledyne Imaging Systems SIDECAR ASIC2 has been in use in astronomy for some time and has been flown on the 

Hubble Space Telescope (for the Advanced Camera for Surveys Repair mission), Landsat Data Continuity Mission 

(Thermal Infrared Sensor), and planned for the James Webb Space Telescope.  This design has served the previous 

generation of instruments very well, but suffers from shortcomings in performance.  One example is well documented 

from the JWST NIRSpec project3.  The main performance shortcomings relate to analog-to-digital conversion noise and 

low-frequency noise on the internally generated biases. 

We understand that ESA/Caeleste has been developing a similar device based on discussions at the 2013 Scientific 

Detector Workshop4.  This device has some architectural choices that make it more difficult to use for WFIRST.  In 

particular, it supports 16 analog inputs, which is half of what we need for the WFIRST detectors.  It would add system 

complexity to require two ASICs per detector.  In addition, the digital interfaces to the warm electronics are fairly 

advanced (e.g., SpaceWire). This feature is not required for performance but will likely increase power dissipation.  For 

small numbers of detectors this could be a very good choice, but for WFIRST, further optimization was justified. 

1.2 Custom ASIC Design Drivers 

One of the driving principles for the ASIC functional design is that it should be made as “user friendly” as possible.  In 

the case of a flight project, simplicity facilitates flight firmware/software validation and verification.  With this in mind, 

the design of the ASIC was guided by three benchmark cases.  All these cases used a notional Teledyne Imaging Sensors 



 

 
 

 

H4RG-10 ROIC for the design study.   The typical operating configuration is 100 or 200 kHz pixel rate, 32 or 64 video 

outputs, and continuous frame readout (sampling up the ramp). 

 

Benchmark I:  Operate the detector in a basic scientific mode readout (sample up the ramp for a fixed number of 

readout frames) without the need for extensive programming. 

 

Benchmark II:  Operate as in Benchmark I, but with at least one guide window readout at ~ 20 Hz CDS, again without 

the need for extensive programming.  Guide windows are implemented as special clocking patterns to the detector that 

are dependent on the location and size of the guide window.   

 

Benchmark III:  Support immediate dynamic resets of pixels based on the video signal output. 

 

These benchmark cases were used to define the target specification and basic architectural features, which then drove the 

detailed design.  Highlights of the target specification include: 

 

Detector Biases: 

 24 individually programmable bias channels configurable as current or voltage biases 

 12-bit resolution, < 2 mV (voltage mode) or 2% of maximum current setting 

 Noise < 10 μV rms (for current mode assumes 1 kΩ load) 

Detector Clocks: 

 32 programmable clock inputs/outputs 

 All channels synchronous to system clock, selectable routing, programmable delay and polarity 

 Selectable output voltage and drive strength 

 Ability to synchronize multiple ASICs 

ASIC Operation: 

 Basic operation with a sequencer, support more complex functions (like amplitude dependent pixel level 

dynamic reset) with an on-chip microcontroller 

 Compatible with large format CMOS analog detectors 

 < 300 mW at 100 kHz with 32 channels ADC 

 Compatible with spacecraft environment (launch, radiation, etc.) and cryogenic operation to < 90 K 

 Provide basic math functions on ADC outputs (see text) 

Detector Pixel Data: 

 40 analog input channels with adjustable gain (0 – 24 dB) and offset 

 16 bits resolution up to 200 kHz, 14 bit resolution at 3 MHz 

 Noise < 15 µV at 400 mV swing 

 DNL < 0.5 LSB, INL < 2 LSB 

Scientific Data Outputs: 

 Up to 16 LVDS channels (32 in CMOS mode) for science data communication to warm electronics 

 

 

Key detailed design drivers are 1) minimize power dissipation (to more easily support cryogenic operation), 2) “normal” 

die/package size (to enable efficient packaging for flight and to optimize yield), 3) radiation hardened implementation 

(to support operation in the space environment). 

 

2. DEVELOPMENT PLAN 

The WFIRST Project implemented a three-phase development plan in order to minimize the risk of developing the 

custom ASIC hardware.  This effort started in early 2013 with the initial planning.  As of the presentation of this paper, 

the first two phases have been completed, and the third phase, the full ASIC, has completed design and layout with 

silicon manufacturing about to begin.  These phases are summarized here, and the hardware/results are described in the 

following sections. 



 

 
 

 

2.1 Phase 1 - Test Structures Chip 

This initial phase focused on ensuring that all the device parameters are known for modeling cryogenic performance, and 

that key fundamental building blocks are optimized. 

2.2 Phase 2 - Analog-to-Digital Converter Test Chip 

This second phase retired key risks in the analog-to-digital converter design, which we determined was the highest risk 

element in the design. 

2.3 Phase 3 - Full ASIC 

The final ASIC design is completed using components and tools developed during the first two phases.  Additional 

architectural digital logic and processing features were implemented in parallel while the hardware for Phases 1 and 2 

was being developed. 

 

3. TEST STRUCTURES CHIP 

3.1 Overview 

From the start of this project, we had a concern about our ability to simulate and understand the circuit behavior at 

cryogenic temperatures.  This concern applies at the level of the individual transistor types (e.g., I/V curves and speed) 

as well as higher-level performance achieved in the basic analog amplifier/buffer building blocks (most notably, noise 

and stability).  Some data is available in the literature and from the foundries, but much of the low temperature behavior 

is foundry-specific.  Thus, the process used to build our ASIC was determined early on and we designed test structures 

to validate the models.  The Test Structures Chip was implemented as a multi-project wafer run to minimize cost. 

In the end, two versions of the Test Structures Chip were created.  The primary motivation was to evaluate lot-to-lot 

performance variations.  In addition, a minor adjustment to the band-gap reference voltage generator was implemented 

in the second iteration. 

The single transistors in this chip also provide a range of test devices to explore long-term reliability at cryogenic 

temperatures.  In particular, we plan to test for hot electron degradation at a range of temperatures, and to use this data in 

our future flight reliability models. 

3.2 Design 

The design of the Test Structures Chip includes isolated transistors and resistors and few building blocks for the analog 

section of the full ASIC.  The specific device types are: 

 Thin oxide PMOS and NMOS (1.8V) transistors: 6 types of various geometries 

 Thick oxide NMOS (3.3V) transistors: 6 types of various geometries 

 Thick oxide PMOS (3.3V) transistors: 6 types of various geometries 

 Zero threshold NMOS (native 3.3V) transistors: 6 types of various geometries 

 Resistors: low resistance poly, high resistance poly, Nwell, metal 

 Dual 2.5V bandgap references 

 Single-stage cascaded operational transimpedance amplifier 

 Two-stage class AB amplifier with dual differential pair inputs 

 Two-stage class AB amplifier with PFET folded cascade input 

 Chopper-stabilized two-stage class AB amplifier 

 4-bit digital-to-analog converter to test the R2R design 

 NFET 10x gain current source 



 

 
 

 

 PFET 10x gain current source 

 NFET/PFET 100x gain current source 

3.3 Results 

The test configuration for the Test Structures Chip is shown in Figure 1 with its test packaging and supporting test 

electronics board, all located on the cold plate in the test cryostat. 

 

Figure 1. Test Structures Chip Test Configuration. 

For basic transistor characterization, the IDS-VDS and IDS-VGS I/V curves were measured for each transistor type and 

geometry at 295 K, 200 K, 150 K, and 80 K.  The measured curves were found to match the models provided by the 

foundry within 10% over the temperature range. 

The DAC test circuit consists of a 4-bit R-2R ladder plus range selection bit, internal filter, and output amplifier that 

buffers the output for the 0 to 2 V range (non-inverting) or for the 2 to 4 V range (inverting).  The 2 V reference used for 

testing the DAC was generated externally.  The DAC circuitry was characterized for application as internal and external 

(detector) biases in the ASIC.  The total noise (15 mHz – 100 kHz) on the DAC output between 0 to 2 V is 8.5 μVrms at 

295K and 4.8 μVrms at 80K.  Due to the inverting amplifier configuration with an additional feedback resistor in the 

upper range (2-4V), the noise is slightly higher.  The DAC noise spectrum at 295 K and 80 K for the 0 to 2 V range and 

with internal CMOS filter capacitor switched on and off is shown in Figure 2.  An instability driving capacitive loads in 

the 100 nF to 5 μF range was found in the DAC output amplifier.  Programmable compensation capacitances in 

subsequent phases of the ASIC design controls this instability. 

The CMOS bandgap reference was also characterized between 295 K and 80 K with noise and stability measured at the 

two temperature extremes.  With an external 10 uF ceramic bypass capacitor on the unbuffered bandgap node, total noise 

(15 mHz – 100 kHz) on the buffered reference output is 5.8 μVrms at 295 K and 5.0 μVrms at 80 K.  The reference is 

stable to +/- 45 ppm over a 200-hour period.  The bandgap reference voltage over the operating temperature range is 

shown in Figure 3.  A hysteresis in the voltage was discovered, where the voltage during cooldown is lower than when 

warming up.  The behavior appears to be the result of a hysteresis in the strain induced on the silicon by the epoxy used 

to bond the silicon to the ceramic package5.  The magnitude of the voltage hysteresis is a function of the local minima 

and maxima temperatures that the device has been exposed to.  For a 295 to 80 K swing, the hysteresis amplitude is 5 

mV; 2 mV for a 115 K swing; and undetectable for a +/- 10 K temperature swing around a fixed operating temperature.  

At a stable temperature, there is no settling or transition between the two curves in the hysteresis plot.  Initially, the 

bandgap reference displayed a cold-start anomaly where it would not turn on at temperatures below 150 K, even when 

pulled up externally to try and jump start the circuit.  The second spin of the test structures chip solved this issue with an 

internal “jump-start” bypass transistor that enables the bandgap reference to turn on consistently down to the lowest 

tested temperature of 80 K. 



 

 
 

 

 

Figure 2. DAC noise spectral density in the 0 to 2 V range at 295 K and 80 K with the internal CMOS filter capacitor 

switched on and off. 

 

 

Figure 3. Bandgap reference voltage during cool down (lower curve) and warm up (upper curve).  The bandgap reference 

displays some hysteresis attributed to strain in the epoxy used in packaging the silicon die. 



 

 
 

 

Cryogenic operability and performance of the current source and amplifiers were also measured.  All performed well 

across the operating temperature range, with the current source displaying 160 pArms input referred noise at 295 K and 

250 pArms at 80 K, while amplifiers demonstrated total noise from 4.7 μVrms to 6.5 μVrms at 295 K depending on 

topology and 5.1 μVrms to 6.2 μVrms noise at 80 K (bandwidth of 15 mHz to 100 kHz). 

 

4. ADC TEST CHIP 

4.1 Overview 

The next phase focused on a demonstration of the analog-to-digital converter (ADC) design.  This included the full 

analog front-end including signal routing with various preamp configurations.  The intent is to create a cryogenic analog-

to-digital data acquisition module that both validated the design for the full ASIC as well as providing a potentially 

useful device for other purposes. 

The first version of the ADC Test Chip was largely successful but resulted in a device with three identified 

shortcomings. 

1. Power dissipation was higher than expected because of a communication problem with the foundry on the type 

of resistive ladder to use. 

2. A differential nonlinearity problem (sporadic code-dependent glitches) that was traced to a race condition. 

3. A strong nonlinearity at the very end of the conversion range that was traced to a logic error. 

These shortcomings as well as some minor optimizations were addressed in the final design. 

A second version of the ADC Test Chip will be created after the tape-out of the full ASIC to provide the fully functional 

device as a smaller-scale test platform for the ADC conversion function.  Design features in the ADC Test Chip allow 

for more complete probing of the internal function of the ADCs compared with the more embedded implementation for 

the full ASIC. 

4.2 Design 

The ADC Test Chip implements an 8-channel data conversion system with selectable resistive or capacitive 

preamplifiers.  Control uses a simple SPI interface to read and write internal registers.  The 8 ADC outputs are 

multiplexed into a 16-bit parallel bus.  The configuration registers and timing generators are much more flexible than 

would be required or desirable for the full ASIC design but the intent here is to be able to adjust almost all the timing 

parameters to help understand how to optimize the design.  Figure 4 shows the ADC Test Chip block diagram and the 

floor plan of the die. 

  

Figure 4. ADC Test Chip Block Diagram and Floorplan. 



 

 
 

 

 

The requirements for the ADC are based on the requirements for the full ASIC design as captured above.  The key ADC-

level requirements are summarized in Table 1. 

Table 1. ADC Key Requirements. 

Parameter Units Specification Measured 

(@100 Ksps) 

Comments 

ADC Resolution bits 16 16 Up to 2 Msps min. 

Noise bits < 1 0.75  

Differential Nonlinearity 

(DNL) 
bits < +/- 0.5 +1.5/-1 

High DNL due to clock race condition 

in ADC timing. 

Integral Nonlinearity (INL) bits < +/- 2 +/- 3 (295K) 

+/- 6.5 (80K) 
 

Power (per ADC @ 100 kHz) mW < 3 4 (295K) 

12 (80K) 

The large measured value is related to 

the fabrication error in the resistor 

ladder which is expected to be 

corrected in the next revision. 

Power (per ADC @ 200 kHz) mW < 5   

Power Specification 

Temperature 
K < 140   

Maximum conversion speed 

(goal) 
Msps 10  At 14-bit resolution. 

Operating Temperature K 80 to 300 80 to 300  

Pitch m 400  To fit into full ASIC floor plan. 

 

A configurable preamp section provides signal conditioning of the detector video signals before digitization.  Its purpose 

is to provide gain, noise filtering, and sufficiently low impedance to drive the ADC. Two different preamp options are 

available for each channel: resistive feedback or capacitive feedback. When using the resistive feedback option, 

continuous mode operation is enabled that does not require any clocking or resetting. The amplifier can be configured as 

a single-ended, or fully differential, or instrumentation amplifier (two high impedance inputs). When using the 

capacitive feedback option, some clocking is required to perform periodic resets of the capacitive feedback network. A 

correlated double sampling mode is provided that removes possible kTC noise introduced by the amplifier reset.  The 

capacitive feedback mode offers somewhat lower noise and higher linearity, but the resistive feedback mode is attractive 

due to its simplicity in operation (no clocking) and uninterrupted amplification (no reset). 

A fully differential sample and hold amplifier (SHA) has been incorporated between the preamp and the ADC to 

condition the preamp output for the ADC. The ADC has a large input capacitance and it requires the input to settle 

within a fraction of the cycle time. Since the preamplifier needs to gain up small detector signals, it has a high gain 

bandwidth product requirement, making it power-inefficient for driving the large ADC load. The unity-gain SHA 

efficiently drives the ADC and also helps to convert the preamp output common mode voltage to one that is better 

matched with the ADC input common mode requirement. The SHA also has a CDS mode where it can sequentially 

sample two inputs from the preamp and provide the difference to the ADC. This mode attenuates the low frequency 

correlated noise components such as the preamp kTC and 1/f noise.  

The ADC is a multi-sample conversion architecture using a 2-step 5-bit flash conversion followed by an 8-bit successive 

approximation conversion.  First the ADC samples the SHA output with a 5-bit flash stage to estimate the coarse range 

of the inputs (the 5 most significant bits, or MSBs) within the full-scale of the ADC. The ADC full scale can be 

programmed to be as large as   +/- 2 V fully differential range (i.e., a 4 V peak-to-peak single-ended range). Once the 

coarse-range is determined, this value is subtracted from the input and new references that are closer to the input level 



 

 
 

 

are generated for the flash. The flash re-samples this first residue and does a fine conversion within this smaller range, 

again subtracting this conversion from first residue to create the second step residue.  Once this two-step flash 

conversion is over, the second step residue is re-sampled by an 8-bit successive approximation register (SAR) ADC 

stage. This stage gets an even finer reference, within a few mV of the input level, in order to determine the 8 LSBs of the 

16-bit ADC. This stage takes 8 cycles to successively approximate the 8 bits, starting from the MSB, down to the LSB. 

Once the SAR conversion is over, the two 5-bit flash outputs and the 8 bit output from the SAR (total of 18 bits) are 

provided to a digital error correction block. This block uses the inherent overlap in the stages and generates the final 16 

bits that are immune to each stage’s saturation effects due to noise, offset, charge injection, or other causes. Effectively, 

the ADC successively approximates the 16 bits in 10 cycles. There are additional cycles provided for sampling and 

settling.  Due to ADC’s higher internal clock rate, the ADC is provided a sample clock as well as a fast oversampling 

clock from the clock generator. In the test chip several of internal clocks are fully programmable for evaluating detailed 

circuit performance.  

The architecture converts a differential voltage input to 16 bits in an extremely power-efficient manner. The ADC 

incorporates several programmable functions that make the architecture scalable. The ADC biases and references are 

fully programmable, since the bias block generates them. Its internal clocks are programmable. In addition, each circuit 

element in the ADC has programmable bandwidth and programmable swing. This allows the power dissipation to be 

optimized from rates as low as 100 kHz to those as high as several MHz. The power can be optimized for the chosen bit 

resolution as well as for the operating temperature. This can range from cryogenic to room temperatures. The test chip 

has demonstrated the highly scalable power-efficient ADC architecture to be fully functional.  The test chip iteration is 

incorporating an improved design that will demonstrate the desired power dissipation as well as linearity performance. 

4.3 Results 

The ADC test chip was characterized in a cryostat identical to the one used for testing the Test Structures chip.  

Performance of the ADC, signal conditioning front-end, and internal biases, was measured at 295 K, 180 K, and 80 K.  

A custom test platform, the Analog Source Board (ASB), was used to provide low-noise biases, programmable linear 

ramps, and arbitrary waveforms that are multiplexed onto any combination of the differential ADC analog inputs.  The 

ASB is located inside the shielded test cryostat to reduce environmental noise.  The ADC performed well at all 

temperatures tested, meeting or approaching the performance requirements.  It should be noted that due to timing related 

issues discussed below, the ADC was not tested above 100 Ksps.  The confirmed ADC performance characteristics are 

listed in Table 1.  

Using the capacitive preamps configured with a gain of 16, the total input-referred noise is 8.5 μV rms at 295 K and 9.2 

μV rms at 80 K (0.1 Hz to 160 kHz bandwidth).  Using the resistive preamps with a gain of 16, the total input-referred 

noise is 12.5 μV rms at 295 K and 16.1 μV rms at 80 K over the same bandwidth.  Using a per-sample correlated double 

sampling (CDS) mode in the sample and hold amplifier and an internal reference, we demonstrated removal of kTC reset 

noise and low frequency 1/f noise in the capacitive preamp, even at room temperature.  The total input-referred noise 

with a gain of 16 in the capacitive preamps and the sample-and-hold amplifier in CDS mode is 7.6 μV rms at 295 K.  

There is a penalty as the bandwidth of the front-end needs to be doubled, but for 100 or 200 kHz operation this is a 

reasonable trade.  Figure 5 shows images compiled of a single ADC channel readout using the capacitive preamp to 

sample a static reference at 100 Ksps and resetting the capacitors every 1024 samples due to the large drift in the 

capacitive preamps at room temperature.  The image on the right uses CDS against an internal reference for every 

sample, while the image on the left is direct sampling.  There is no post-processing on either image. 

The biases derived by 12-bit DACs from the internal bandgap reference, intended for internal ADC operation and 

biasing the detector, perform well across the required temperature range.  The biases have a total noise of 8.7 μVrms at 

295 K and 6.8 μVrms at 80 K (0.1 Hz to 160 kHz bandwidth) and are stable driving capacitive loads.  The 12-bit DACs 

span from   0 V to 3.3 V (VDDA) and demonstrate a DNL < +/- 0.5 LSB and INL < +/- 3 LSB. 

There are some shortcomings in the device performance that were identified during testing, all of which have been 

evaluated, reproduced in simulation, and corrected in the full ASIC design (and the ADC Test Chip respin).  Power 

dissipation of the ADC is higher than anticipated, and increases by a factor of 3 at 80 K (See Table 1).  This was due to a 

communication error with the foundry where silicided polysilicon was used in the ADC flash resistor ladder instead of 

non-silicided polysilicon.  The silicided poly has a large temperature coefficient, while the resistance of the non-silicided 

poly is relatively stable with temperature.  This results in the increased power dissipation that we measured as the device 



 

 
 

 

cools.  Additionally, the nominal resistance of the silicided poly resistor ladder was lower than designed, causing higher 

than expected power dissipation even at room temperature. 

 

  

Figure 5. Direct sampling of a static bias using the capacitive preamp with reset every 1024 samples (left), sampling of the 

same bias using the capacitive preamp with reset every 1024 samples with correlated double sampling (CDS) performed in 

the sample and hold amplifier (right), both at 295 K.  The per-sample CDS removes both kTC reset noise and drift in the 

capacitive preamp. 

 

A second issue discovered during testing is sporadic code-dependent errors. These “glitches” were traced to parasitic 

capacitance on key clock signals producing a race condition in the SAR portion of the ADC.  The result is a pile-up of 

codes near the ADC decision points, as can be seen in Figure 6.  These glitches can be minimized in local regions of the 

ADC range through fine adjustments of the internal clock edges, but under most conditions the glitches cannot be tuned 

out over the entire span of the ADC.  Because the root cause is understood, these code-dependent glitches were excluded 

when characterizing the noise and linearity of the ADC. 

 

Figure 6. Histogram of ADC output codes with an overdriven sine wave input showing ADC code-dependent DNL glitches. 

 

Another DNL issue was found to occur in the 256 codes at the two extremes of the ADC range.  To achieve a full 4.0 V 

conversion range, these regions of the ADC are treated separately as a special case.  Testing uncovered an error in the 

decision logic used for these top and bottom 256 codes, which is now understood and has been corrected.  Our testing 

also identified several features in linearity, biasing, clocking, and debugging where we have been able to understand 



 

 
 

 

limitations and adjust the circuit design to improve the analog performance of the ASIC.  Having the opportunity to 

characterize and understand the standalone analog performance of the ADC, preamps, and biases and to fold that 

feedback into the full ASIC design should prove beneficial for the performance for the final full ASIC. 

 

5. FULL ASIC 

5.1 Overview 

The full ASIC architecture was established in parallel during the previous phases of work.  In particular, the design of 

the digital logic was taking place and the selection/implementation of the microcontroller was completed.  For the final 

phase of development, the mixed-signal aspects of the design were finalized and the full ASIC layout completed.  This is 

intended to be the first iteration design for the full ASIC.  The Project schedule allows for at least one respin after 

extensive testing is completed before entering the flight production phase.  We intend to hold the majority of the wafers 

from this first lot before metal processing in case minor adjustments are necessary after initial testing. 

The key design drivers for the ASIC are to provide consistency, repeatability, and accuracy in detector timing control 

and conversion operations. 

5.2 Design 

The interfaces for the ASIC are shown in Figure 7.  A generic detector at the top of the figure requires bias voltages and 

clocks to operate.  The detector also produces analog data that will be digitized by the ASIC. 

 

 

Figure 7. ASIC Interface Diagram. 

 

The block diagram of the full ASIC is shown in Figure 8.  We briefly describe each of the blocks in the design, starting 

on the right side with the digital elements. 

Feature Design Intent 

mSPI Serial Control Primary control interface for 

the warm electronics. 

Provides ASIC memory and 

register access. 

Clocking Digital control of the detector 

from the pattern generator. 

dSPI Serial Control Detector configuration. 

Quiet Voltages Up to 24 biases provided to 

the detector. 

Analog Science 

Data 

32 channels plus 8 

housekeeping. 

Digital Science 

Data 

Up to 16 LVDS outputs to 

the warm electronics. 



 

 
 

 

Basic operation is controlled by the mSPI interface working in concert with the ASIC internal Sequencer.  For most 

applications, programming the Sequencer (loading up the EXEC and PGEN memories) provides sufficient control.  The 

Sequencer controls a bank of biases and Detector Control (clock) Outputs directly through configuration registers and 

the Pattern Generator. 

 

 

Figure 8. ASIC Block Diagram. 

 

When the Sequencer provides sufficient flexibility for the application, the embedded microcontroller, based on an open 

source msp430 design, can be disabled.  For more complicated applications, the microcontroller provides additional 

control functions through its ability to read and write all configuration registers and memories using direct memory 

access (DMA) design.  The DMA controller can also provide automatic data scrubbing for the on-chip dynamic 

memories.  The configuration registers are constructed from radiation-hardened designs for the basic flip-flops.  All 

memories are protected from single-event upsets by error correction logic.  One of the more challenging features of this 

architecture is to support deterministic multi-port access to these elements.  The multi-port arbitration logic is 

configurable to provide flexibility as well as supporting debugging. 

The state of the ASIC is monitored by 128 status bits, which can be read by the microcontroller or the Sequencer, and 

provides a way of mapping specific conditions to a set of actions.  This includes certain conditions within the Math 

Blocks that provide efficient detection of certain conditions (e.g., signals reaching a certain threshold value). 

Referring to the top left of Figure 8 (above), the analog inputs are routed to preamplifiers and then to a set of ADCs.  

The outputs of the ADCs go through basic Math Blocks that provide the ability to perform configurable processing of 

the ADC output streams (see below for a more detailed description).  If desired, the microcontroller has the ability to 

examine the results of that processing.  This feature can be used to implement elaborate readout schemes to take data-

dependent readout control based on real-time pixel values.  The Math Block outputs then go to a Data Formatter and are 



 

 
 

 

then transmitted to the warm electronics.  An on-board temperature sensor is also available to feed into the data stream 

as needed. 

The ADCs are essentially the same implementation as on the ADC Test Chip except that clocking is optimized and 

ASIC Clock Control now drives the ADC conversion.  This conversion is strobed by an internal control signal that is 

initiated by the Sequencer. 

A key architectural feature is the ability to synchronize multiple ASICs.  For example, one of the detectors being 

considered for WFIRST could provide as many as 64 outputs.  At least two ASICs would be required to support this 

mode of operation, and this can be accommodated by design.  The “Slice Control” signals in the mSPI provide the 

detailed synchronization features that enable using the resources in multiple ASICs in this manner. 

A diagram of the floor plan is provided in Figure 9.  The die size is approximately 20 mm x 16 mm and there are ~400 

pads. 

 

 

Figure 9. ASIC Floor Plan. 

 

Compared to the ADC test chip, the preamp section has been enhanced with more linear switches and a flexible input 

signal routing network that supports a variety of configurable signal connections between different channels. In addition, 

programmable current sources have been included in each analog input pad that can act as source follower loads for 

buffered output operation of the ROIC video outputs. 

The 12-bit DACs in the bias generator have also been improved over those in the ADC test chip by adding a second 

buffer amplifier that can optionally be used instead of the primary buffer. The second buffer offers lower output 

impedance and higher current drive at the cost of slightly increased noise. 



 

 
 

 

Based on the desire to react to certain signal conditions in real time (e.g. resetting of saturated pixels during the 

acquisition ramp), special per channel Math Blocks have been included. Each block has the capability to add, multiply, 

shift, and compare the ADC data with configurable parameters, and to provide the collected comparison results to the 

microcontroller (or external user) in a time-efficient manner. Further action can then be taken to reset or otherwise 

manipulate the corresponding pixels in the detector. 

Transmission of science data from the ASIC to the external electronics is carried out through a configurable digital 

interface that can use a configurable number of signals (1, 4, 8, 16, or 32), and that sends out science data in packetized 

form. Data from all enabled ADC channels is combined into a FIFO (First In – First Out) memory before transmission, 

and then all data is sent through the same interface. Collection of data from the ADC/Math Block outputs is controlled 

by the Data Gatherer, which sequentially inserts the ADC values into the science data FIFO. On the other end of the 

FIFO, the Data Formatter picks up the science data and generates the transfer block according to the selected interface 

mode. In addition to science data, the data block also contains customizable header information (e.g. telemetry) and a 

checksum at the end. 

5.3 Results 

As of this conference date (July 2016), the full ASIC design tape-out is anticipated to complete and the silicon 

manufacturing started.  Our test plan projects that by the end of 2016, we will have the first test results from the full 

ASIC hardware. 

 

6. TEST SUPPORT EQUIPMENT 

6.1 Test Electronics 

For the Test Structures Chip, we designed and implemented a custom cryogenic test card that interfaced to standard test 

equipment in the lab.  The cryogenic test card and die packaging implemented Kelvin connections up to the silicon wire 

bond on all critical signal paths, allowing us to probe the different test structures using a large set of switches and use 

standard equipment to make the automated measurements (e.g., I/V curves).  The buffer amplifiers were also switched so 

we could change input and output configurations.  The band gap references, DAC, and current sources had different load 

configurations that could also be selected during testing.  Outputs for noise characterization were buffered and amplified 

by low-noise preamps on a second electronics card mounted inside the cryostat to minimize the effects of environmental 

noise. 

For the ADC Test Chip, a custom test platform, the Analog Source Board (ASB), was mounted inside the cryostat to 

supply test stimulus to the ADC.  The ASB includes 5 buffered and filtered 16-bit DACs for generating low-noise static 

biases, 2 20-bit DACs for generating ramps and arbitrary waveforms from look-up table memory in the warm 

electronics, and 2 coaxial inputs for analog pass-through from external instruments such as a low-distortion function 

generator.  All of the generated signals can be multiplexed onto any combination of ADC channels or used to override 

internal ADC biases and references. 

In planning for the infrastructure we would use to test the more integrated hardware, we settled on a test configuration 

that uses an interface we already have for reading out our imaging detectors.  The warm electronics are based on the 

Markury Scientific Multi-ASIC Control Electronics (consisting of a MAICE and an ACE board), which are in general 

use in our labs at the NASA Goddard Space Flight Center for detector testing.  A change of firmware is required to adapt 

to the test article, as well as to control the ASBs that provide the stimulus for the device under test. 

6.2 Electronics Test Cryostats 

One problem we have often faced in developing cryogenic electronics is having a cryostat that provides a convenient 

infrastructure to support the testing.  Our standard cryostats for testing detectors are designed for testing under more 

static conditions than is desirable when trying to characterize electronics over a large temperature range. 

We designed and built two identical cryostats with Universal Cryogenics in Tucson, AZ.  They are cooled using single-

stage Sumitomo RDK-400B cold heads.  The closed-cycle system allows for very flexible operation at a wide range of 

temperature, from room temperature down to well below 80K, our minimum test temperature requirement.  To allow for 

extremely low noise measurements, the cryostats are also outfitted with a liquid Nitrogen (LN2) cooling feature, where, 



 

 
 

 

for short periods of time and with LN2 flow-through, it is possible to maintain a cold operating temperature while 

turning off the mechanical cooling system. 

The cryostats incorporate 8 ports for electrical interconnects.  It is prewired for up to 150 differential signals for the test 

application.  There are another 50 single-ended lines for power and relay control, as well as 99 single-ended lines 

dedicated to housekeeping and temperature control.  This configuration is adequate for all the required testing. 

There are two cryostats because we anticipated the need for parallel testing of different parts.  For Phases 1 and 2, the 

two cryostats each held a Test Structures Chip and an ADC Test Chip. As we transition to the full ASIC, they will be 

configured for the ADC Test Chip and the full ASIC.  Eventually, after development is complete and we enter the flight 

phase, they will both be used for the full ASIC.  Figure 10 shows an exterior and interior view of these cryostats. 

 

 

Figure 10. Electronics Test Cryostat Exterior and Interior Test Volume. 

 

6.3 Cold Probe Station 

Another problem that has plagued cryogenic electronics in the past is the inability to perform probe testing at or near the 

intended operating temperature.  Most vendors and facilities take the strategy of room temperature probing, followed by 

die selection and packaging, and then the first cold testing on the packaged parts.  The efficiency of this process depends 

on the yield going from warm to cold.  This could be a major cost impact since rejected parts still need to be packaged 

before testing. 

For this project we have constructed a cold probe station so that we can perform wafer-level testing at the intended 

operating temperature.  This custom device is designed for use on up to 8” wafers (with expansion to 12” possible), and 

is cooled by a LN2 flow-through system to avoid vibrations that could affect the precision motion stages. A high-

resolution visible camera helps with alignment of the probe card to the die.  Precision positioning of the probe card (in 

all axes and rotations) is controlled by a hexapod stage.  Wiring from the probe card to the warm test electronics 

supports the ~400 pins for the full ASIC. 

As of this conference, the cold probe station is starting its initial qualification tests using a dummy wafer and probe card 

designed to closely emulate the full ASIC configuration. 



 

 
 

 

 

7. PACKAGING 

For initial testing, the ASIC die will be packaged on an aluminum nitride fan out board that will be wire bonded to a 

standard PCB.  The fan out board and an Invar baseplate serve mainly as the mechanical, thermal, and electrical 

interface between the silicon die and the standard PCB in order to accommodate the coefficient of thermal expansion 

mismatch and also match the supportable wire bond pitches.  This is similar to what was previously done with the two 

test chip configurations  (see Figure 11).  The packaging will be performed at the NASA Goddard Space Flight Center 

Detector Development Laboratory (GSFC DDL), which has extensive experience with cryogenic packaging for sensor 

systems.  The resulting PCB will be tested in the custom electronics test cryostat with the test electronics. 

 

 

Figure 11.  Test Packaging for the Test Structures Chip (left) and ADC Test Chip (right).  Silicon die is epoxy bonded to an 

aluminum nitride fanout board, which is bonded into the cavity of a 280-pin ceramic PGA package. 

 

For flight, the ASIC die will be packaged in a custom, hermetically sealed LGA ceramic package that will be attached to 

a flight PCB using solder columns.  This packaging approach has been validated on previous missions6,7 and has been 

adapted for cryogenic operation by an earlier WFIRST activity and used for the ESA Euclid Near Infrared 

Spectrophotometer (NISP) instrument8.  Our development team is designing the custom ceramic package in 

collaboration with the vendor, Kyocera.  While initial packaging of the die can take place at the DDL, we anticipate 

using a commercial vendor for the flight parts to implement the Class K hybrid packaging requirements in volume.  We 

anticipate that WFIRST will need approximately 45 flight-qualified parts. 

 

8. LESSONS LEARNED AND COMPLETION PLAN 

The development of this device has been a rewarding challenge for our small and dedicated team.  During this work, 

several key points required a major concentration of effort. 

While the goals for this device have been clear from the beginning, the formalization of these requirements took 

significant effort.  In one sense, we knew too much.  The user community that we consulted for these requirements 

included the NASA GSFC Detector Characterization Laboratory (DCL), which has experience with a wide range of 

detector technologies and implementation approaches.  The harmonization of the collective needs and ambitions of this 

community was a continual work in progress, leading to some degree of requirements creep as the project moved 

forward.  In the end, we believe that the architecture supports the guiding principles expressed above, and will result in a 

device that will serve the community well. 

Some of these choices and desires are relatively straightforward.  Items such as the type of preamps to implement 

(resistive or capacitive), and whether/how to implement a built-in correlated double-sampling (CDS) feature, can be 



 

 
 

 

addressed with modern CMOS design by implementing the choice in hardware, thus deferring the decision.  Items such 

as the number of video channels/biases/clocks are decided by the immediate need for WFIRST, with support for 

synchronization features to facilitate operating multiple ASICs in parallel to provide more resources, if necessary. 

A system architecture trade that required significant discussion is whether or not a microcontroller is needed.  Because a 

driving desire is to provide a simple operating mode, this ASIC will drive almost any existing readout integrated circuit 

(ROIC) using a simple sequencer with a small instruction set (without using the microcontroller).  The Sequencer alone 

satisfies Benchmarks I and II described above.  The need to support Benchmark III drove the decision to incorporate the 

microcontroller.  An additional benefit is that there is now the flexibility to address any design shortcomings or 

unanticipated needs.  The microcontroller selected is an open source design with the necessary tools for supporting the 

device. 

An unanticipated challenge was in the choice of tools for silicon layout.  We initially selected a tool that we believed 

would satisfy our needs at a cost consistent with a technology development project.  As the development progressed, it 

became apparent that even at the scale of the ADC Test Chip, several shortcomings were apparent.  This was further 

complicated by the fact that there was a change in ownership for the tool developer in the middle of our work.  The 

vendor’s support has generally been helpful, but they too had a learning curve after this transition.  After a significant 

delay, we secured leased access to more established tools, especially for the place-and-route and clock optimization 

functions, and were able to complete the design. 

The development part of this project is nearly complete, and we are looking forward to having the full ASIC under test 

in the later part of 2016.  After validating the silicon and implementing the flight packaging, we will undergo a 

qualification program for the hermetic microcircuit as well as at the cold electronics module (PCB) level.  This 

qualification program will start about a year after delivery of the first silicon.  At that point, we enter the flight build 

phase for the cold electronics module. 
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