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Parabolized stability equations (PSE) are used in a variational approach to study the
optimal, non-modal disturbance growth in a Mach 3 flat plate boundary layer and a Mach 6
circular cone boundary layer. As noted in previous works, the optimal initial disturbances
correspond to steady counter-rotating streamwise vortices, which subsequently lead to
the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The
nonlinear evolution of the linearly optimal stationary perturbations is computed using the
nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching
technique is used to facilitate the computation of nonlinear streaks with large amplitudes.
To assess the effect of the finite-amplitude streaks on transition, the linear form of plane-
marching PSE is used to investigate the instability of the boundary layer flow modified
by spanwise periodic streaks. The onset of bypass transition is estimated by using an N-
factor criterion based on the amplification of the streak instabilities. Results show that,
for both flow configurations of interest, streaks of sufficiently large amplitude can lead to
significantly earlier onset of transition than that in an unperturbed boundary layer without
any streaks.

Nomenclature

G energy gain
M Mach number
M energy weight matrix
(x, y, z) Cartesian coordinates
(ξ, η, ζ) streamwise, wall-normal and spanwise coordinates
h1 streamwise metric factor
h3 spanwise metric factor
ρ density
ν kinematic viscosity
(u, v, w) streamwise, wall-normal and spanwise velocity components
T temperature
q̄ vector of base flow variables
q̃ vector of perturbation variables
q̂ vector of amplitude variables
Tw wall temperature
Tad adiabatic wall temperature
Re Reynolds number
α streamwise wavenumber
β spanwise wavenumber
m azimuthal wavenumber
L flat plate characteristic length
δ boundary layer thickness
ω angular frequency
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J objective function
E energy norm
NE logarithmic amplification factor based on energy norm
Ω domain of integration
K bilinear concomitant
L Lagrangian function
A, B, C, D, L, P, Q linear matrix operators

Subscript

r reference value
0 initial position
1 final position

Superscripts

∗ dimensional value
† adjoint
T transpose
H conjugate transpose

Abbreviations

EVP EigenValue Problem
FM1 First Mode with fundamental wavelength
FM1/2 First Mode with subharmonic wavelength
LST Linear Stability Theory
NS Navier-Stokes
OSE Orr-Sommerfeld and Squire Equations
PDE Partial Differential Equations
PSE Parabolized Stability Equations
S Sinuous secondary instability
SS Subharmonic Sinuous secondary instability
SV Subharmonic Varicose secondary instability
V Varicose secondary instability

I. Introduction

The most common approach to transition prediction relies on exponential or modal amplification of
discrete modes. The classic linear stability theory is mainly concerned with individual sinusoidal waves
propagating in the boundary layer parallel to the wall. In this context, the quasi-parallel flow approximation
is typically used, and the linearized equations of fluid motion lead to an eigenvalue problem, which may
be expressed in the limit of incompressible flows in the form of the Orr-Sommerfeld and Squire equations
(OSE).1,2 Effects of weak non-parallelism in mean-flow can be accounted for by using multiple scale theory,
which yields the leading order correction to the local amplification rate and phase speed predicted by the
quasi-parallel theory. A more useful extension to the non-parallel stability theory was proposed by Herbert,3

who introduced the concept of Parabolized Stability Equations (PSE). Since then, the PSE technique has
been applied to a variety of problems, including linear and nonlinear evolution of instability waves in 2D
and 3D shear flows across a broad range of speeds.

Besides the exponential growth characteristics of convectively unstable eigenmodes in a boundary layer
flow, the external disturbances, e.g., freestream turbulence and surface roughness, can also have a large
influence on the transition process. An additional route to transition may involve nonmodal growth, which
refers to situations in which transient growth of disturbance energy is observed even when the flow is
modally stable, i.e., all eigenmodes are damped. Mathematically, the transient growth is associated with
the non-orthogonality of the eigenvectors corresponding to the linear disturbance equations. Physically, the
main growth mechanism corresponds to the lift-up effect, which results from the conservation of horizontal
momentum when the fluid particles are displaced vertically, i.e., along the wall-normal direction.

The nonmodal, or equivalently transient, growth mechanism has been extensively studied in a large variety
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of flows. The algebraic inviscid lift-up instability mechanism was originally identified by Stuart,4 Ellingsen
& Palm,5 and Landahl6 for inviscid shear flows. In the 1990s, numerous temporal nonmodal growth studies
of incompressible two-dimensional shear flows assuming a parallel-flow approximation appeared, among
others by Butler & Farrel,7 Reddy & Henningson8 and Trefethen et al.9 Lately, Hanifi et al.10 included
the compressibility effects in their study of temporal, nonmodal transient growth in zero-pressure-gradient
flat plate boundary layers. The first spatial analysis of nonmodal growth in a Blasius boundary layer was
presented by Andersson et al.11 and Luchini,12 who used the linearized boundary region equations. The
latter equations include the nonparallel effects associated with boundary layer development that were missing
from the temporal formulations of transient growth. The nonmodal analysis of compressible boundary layers
was continued by Tumin & Reshotko,13 who reformulated the temporal analysis of Hanifi et al.10 in a
spatial framework, but still assuming the parallel flow approximation. The nonparallel effects were included
in their subsequent publications14–17 by solving a parabolic set of equations based on the boundary region
approximation. These authors also addressed the effects of convex surface curvature by studying optimal
growth in the boundary layer over a sphere.15,16 Their findings indicated that increasing convex curvature
reduces nonmodal growth. These studies also considered the effects of wall cooling and concluded that
reducing the wall temperature leads to stronger nonmodal growth. Transient growth in flat plate boundary
layers at hypersonic Mach numbers up to Mach 10 has been studied by Paredes et al.18,19 Their results
showed that the same physical mechanism of nonmodal growth, i.e., the conversion of streamwise vorticity
into streamwise streaks via the lift-up effect, persists even at hypersonic flow conditions. The studies by
Paredes et al.18,19 also addressed the effects of viscous-inviscid interaction near the leading edge including the
weak shock wave resulting from the displacement effect of the boundary layer. By comparing the transient
growth magnitudes based on Navier-Stokes (NS) mean flow solutions and the self-similar approximation
based on boundary layer equations, they showed that using the exact (numerical) solution leads to strong
reduction of the optimal energy gain for initial disturbance locations that are sufficiently close to the plate
leading edge.

Recently, transient growth has been identified as a candidate mechanism for many examples of bypass
transition.20 This term has historically been used to differentiate the well known paths to transition21 via
modal growth of hydrodynamic instabilities from transition phenomena that are not fully understood on a
theoretical basis. Examples of transition often classified as bypass transition are the subcritical transition
observed in Poiseuille pipe flow experiments,22,23 transition due to distributed surface roughness on flat
plates24,25 or cones,26 and subcritical transition observed in spherical forebodies.27–30

The focus of this paper is on nonlinear transient growth and boundary layer transition in high-speed
flows. While the possibility of strong linear transient growth in these flows has been demonstrated,16–19

its relation to boundary layer transition cannot be established within the framework of linear disturbances.
This paper begins to address that limitation by investigating the nonlinear evolution of linearly optimal
disturbances when they are initiated with finite amplitudes, and on the subsequent streak instability that is
likely to result in the onset of bypass transition. Section II briefly describes the optimal growth theory based
on PSE and introduces the linear plane-marching PSE for monitoring linear and nonlinear development
of disturbances in three-dimensional flows with a single slowly-varying spatial direction, such as those of
interest in this paper. Section III.A presents the nonlinear evolution of finite-amplitude, linearly optimal
disturbances and the subsequent instability characteristics of the perturbed streaky flow in a supersonic,
zero pressure gradient, flat plate boundary boundary layer at Mach 3. Analogous results for a Mach 6 flow
over a sharp, 7◦ half-angle cone are described in Section III.B. Conclusions are presented in Section IV.

II. Methodology

This section introduces the methodologies used in this paper. First, the linear optimal growth theory
based on the PSE is briefly described. This method is used to obtain the optimal initial perturbation that
results in maximum energy gain at a specified downstream position. The linearly optimal perturbation
with a given finite amplitude is used as the initial condition for the parabolic integration of the stationary,
nonlinear plane-marching PSE to obtain a three-dimensional, spanwise-periodic, perturbed boundary layer
flow. Then, the two-dimensional partial differential equation (PDE) based EVP and the linear form of the
plane-marching PSE are used to study the instability characteristics of the perturbed, streaky boundary
layer flows. For more details about these methodologies, as well as about the numerical discretization and
boundary conditions used in this paper, see Paredes et al.18,19,31,32
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II.A. Linear Optimal Growth using PSE

Transient growth analysis is performed using the linear PSE as explained in the literature.19,33–35 The
method is outlined here for completeness purposes. There are strong similarities with the optimization
approach based on the linearized boundary layer equations.11,12,14 The advantage of the PSE-based for-
mulation is that it is also applicable to more complex base flows where the flow evolves slowly along the
streamwise direction but the boundary layer approximation may not hold and that it can be easily extended
to unsteady disturbances. While infinite Reynolds number asymptotic results cannot be directly computed
using this technique, good agreement is achieved between the two methodologies for incompressible and
compressible regimes as shown by Paredes et al.18,19

In the PSE context, the perturbations have the form

q̃(ξ, η, ζ, t) = q̂(ξ, η) exp

[
i

(∫ ξ

ξ0

α(ξ′) dξ′ + βζ − ωt

)]
+ c.c., (1)

where c.c. denotes complex conjugate. The suitably nondimensionalized, orthogonal, curvilinear coordi-
nate system (ξ, η, ζ) denotes streamwise, wall-normal, and spanwise coordinates and (u, v, w) represent the
corresponding velocity components. Density and temperature are denoted by ρ and T . The Cartesian coor-
dinates are represented by (x, y, z). The vector of perturbation fluid variables is q̃(ξ, η, ζ, t) = (ρ̃, ũ, ṽ, w̃, T̃ )T

and the vector of amplitude functions is q̂(ξ, η) = (ρ̂, û, v̂, ŵ, T̂ )T . The vector of basic state variables is
q̄(ξ, η) = (ρ̄, ū, v̄, w̄, T̄ )T . The streamwise and spanwise wavenumbers are α and β, respectively; and ω is the
angular frequency of the perturbation.

Upon introduction of the perturbation form (1) into the linearized NS equations together with the as-
sumption of a slow streamwise dependence of the basic state and the amplitude functions, thus neglecting
the viscous derivatives in ξ, the PSE are recovered as follows(

A + B
∂

∂η
+ C

∂2

∂η2
+ D

1

h1

∂

∂ξ

)
q̂(ξ, η) = 0. (2)

The linear operators A, B, C and D are given by Pralits et al.33 and h1 is the metric factor associated
with the streamwise curvature. The system of Eqs. (2) is not fully parabolic due to the term ∂p̂/∂ξ in
the streamwise momentum equation.36–40 However, for the purely stationary disturbances of interest in this
work, this term can be dropped from the equations as justified by Refs. [34, 41], who found that the term,
∂p̂/∂ξ, is of higher order for transient growth problems, and can be neglected without any loss of accuracy.

The optimal initial disturbance, q̃0, is defined as the initial (i.e., inflow) condition at ξ0 that experiences
the maximum energy amplification up to a specified position, ξ1. Thus, the following objective function
needs to be maximized,

J(q̃) =
E(ξ1)

E(ξ0)
, (3)

where E denotes the energy norm of q̃,

E(ξ) =

∫
ζ

∫
η

q̃(ξ, η, ζ)HMq̃(ξ, η, ζ)h1 h3 dη dζ, (4)

where h3 is the metric factor associated with the azimuthal curvature, M is the energy weight matrix and
the superscript H denotes conjugate transpose. In the present case, the spanwise direction is homogeneous,
i.e., the basic state is independent of the spanwise coordinate and the perturbations are periodic along this
coordinate. Therefore, instead of the definition of Eq. (4), the following one dimensional definition is used
for the solution of the linear optimization,

E(ξ)η =

∫
η

q̂(ξ, η)HMq̂(ξ, η)h1 h3 dη =
1

2
E(ξ). (5)

Nevertheless, both definitions are related by a constant value of 2, so the linear optimization solution is
invariant of this selection; and in what follows, the two-dimensional definition of Eq. (4) will be used for
consistency with the nonlinear part of the paper. Furthermore, the following spanwise-independent definition
of the energy is also used to compare energy of disturbances with different spanwise wavenumbers,

Ê(ξ) =
1

Lζ

∫ ζ+Lζ/2

ζ−Lζ/2
E(ξ)η dζ =

2

Lζ
E(ξ)η =

1

Lζ
E(ξ) (6)
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where Lζ = 2π/β is the spanwise wavelength.
The choice of the energy norm would have an effect on the results. Here, the general approximation

followed by Tempelmann et al.35 is used, which is based on all five state variables. This formulation uses
the positive-definite energy norm derived by Mack42 and Hanifi et al.,10 which is defined by

M = diag

[
T̄ (ξ, η)

γρ̄(ξ, η)M2
, ρ̄(ξ, η), ρ̄(ξ, η), ρ̄(ξ, η),

ρ̄(ξ, η)

γ(γ − 1)T̄ (ξ, η)M2

]
. (7)

The variational formulation19 leads to an optimality system, which is solved in an iterative manner,
starting from a random solution at ξ0, which must satisfy the boundary conditions. The PSE, Lq̃ = 0,
are used to integrate q̃ up to ξ1, where the final optimality condition is used to obtain the initial condition
for the backward adjoint PSE integration, L†q̃† = 0. At ξ0, the adjoint solution is used to calculate the
new initial condition for the forward PSE integration with the initial optimality condition. The iterative
procedure finishes when the objective function, J = G = E1/E0 is converged up to a certain tolerance, which
was set to 10−4 in the present computations.

II.B. Plane-Marching PSE

The plane-marching PSE technique extends the classical line-marching PSE for base flows with a single
strongly inhomogeneous direction to base flows with a mild variation in the streamwise coordinate and strong
gradients in the other two spatial directions, i.e., the wall-normal and spanwise directions in boundary layer
problems. Similar to the derivation of the classical PSE, the disturbance quantities are expanded in terms
of their truncated Fourier components assuming that they are periodic in time as

q̃(ξ, η, ζ, t) =

N∑
n=−N

q̂n(ξ, η, ζ) exp

[
i

(∫ ξ

ξ0

αn(ξ′) dξ′ − nωt

)]
+ c.c. (8)

Substituting Eq. (8) into the NS equations and neglecting the viscous derivatives in ξ, the nonlinear
plane-marching PSE can be written in a compact form as(
Pn + Qn

∂

∂η
+ Rn

∂2

∂η2
+ Sn

1

h3

∂

∂ζ
+ Tn

1

h2
3

∂2

∂ζ2
+ Vn

1

h1

∂

∂ξ

)
q̂n(ξ, η, ζ) = Fn(ξ, η, ζ) exp

(
i

∫ ξ

ξ0

αn(ξ′) dξ′

)
,

(9)
where Fn is the Fourier component of the total forcing F that contains the nonlinear terms. The entries of
the coefficient matrices for Pn Qn, Rn, Sn, Tn, Vn and vector F are found in Paredes.43

In this work, the nonlinear formulation of the plane-marching PSE44 is used to follow the development
of finite-amplitude optimal disturbances (i.e., streaks). A fully implicit formulation has been adopted to
facilitate the convergence of the solution for high streak amplitudes. For the stationary disturbances of
interest in this paper, N = 0 and α0 = 0.

The linear form of the plane-marching PSE, which are recovered from Eq. (9) by setting F = 0, are also
used herein to study the linear stability characteristics of the modified basic state corresponding to the sum
of the unperturbed boundary layer and the finite-amplitude optimal disturbance. The perturbed boundary
layer flow with streaks is characterized by local regions of high gradient in streamwise velocity distribution
across the streak, which can sustain the growth of shear-layer instability modes. The advantage of using
the plane-marching PSE with respect to the PDE-based two-dimensional EVP is that the plane-marching
PSE account for the non-parallel development of the flow. Nevertheless, the solution of the PDE-based EVP
provides a convenient means to obtain the shape function, wavenumber, and damping/growth-rate, required
as initial conditions for the plane-marching PSE integration.

III. Results

A flat plate boundary layer flow at freestream Mach number of 3 with adiabatic wall and a 7◦ half-
angle circular cone boundary layer flow at freestream Mach number of 6 with isothermal wall are studied
next. The selected flow conditions are representative of the instability characteristics of two-dimensional and
axisymmetric boundary layers in the supersonic and hypersonic regimes. Furthermore, the above choice of
flow conditions allows us to build upon the previous analyses of linear optimal growth in Refs. [18, 19].
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III.A. Mach 3 Flat Plate Boundary Layer

The first flow configuration of interest corresponds to a supersonic, flat plate boundary layer with M = 3,
T0 = 333 K, and an adiabatic wall. Only a summary of the results obtained for this case is presented
here. For a comprehensive discussion of the findings, the reader is referred to Ref. [31]. For this problem, the
computational and Cartesian coordinates coincide, i.e., (ξ, η, ζ) ≡ (x, y, z). The self-similar scale proportional
to boundary layer thickness is δ =

√
x∗ν∗r /u

∗
r = x∗/

√
Reδ, where subscript r denotes reference values and

the superscript ∗ indicates dimensional values. The PSE are nondimensionalized with δ1, i.e., the value of δ
at the final location corresponding to x∗1 = L, where L denotes a reference body length scale. Therefore, the
Reynolds number introduced into the equations becomes Reδ1 =

√
ReL. In what follows and in line with

the literature, x∗ is scaled by L, while the remaining two spatial variables are nondimensionalized with δ1.
The streamwise location is written as R = Reδ =

√
x∗u∗r/ν

∗
r .

The instability of the unperturbed, adiabatic, Mach 3 flat-plate boundary layer flow is examined by PSE
to establish the transition behavior in the absence of stationary streak perturbations. The onset of laminar-
turbulent transition is estimated using the logarithmic amplification ratio based on the energy norm E of
Eq. (7),

NE = −
∫ ξ

ξlb

αi(ξ
′) dξ′ + 1/2 log

[
Ê(ξ)/Ê(ξlb)

]
, (10)

relative to the location ξlb where the disturbance first becomes unstable. The N -factor evolution of the
oblique first modes is computed with the PSE. Accordingly, we assume that transition onset is likely to
occur when the peak N -factor reaches a specified value. Figure 1(b) shows the N -factor curves based on the
energy norm E of Eq. (7) of first modes with spanwise wavenumbers from β = 0.025 to 0.135 and frequencies
from ω = 0.006 to 0.046. The first modes that reach NE = 5 and NE = 10 are chosen as representative
threshold values for laminar-turbulent transition under noisy or quiet conditions, respectively. Calculations
show that NE = 5 is reached at R = 1, 596 (i.e., Rex = 2.55× 106) and NE = 10 is achieved at R = 3, 226
(Rex = 1.04× 107).

0
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16

0 1000 2000 3000 4000 5000

N
E

R

β = 0.040, ω = 0.012

β = 0.080, ω = 0.024

Figure 1. PSE predictions for N-factor based on energy norm E of oblique first mode disturbances in an unperturbed
Mach 3 boundary layer with adiabatic wall. The spanwise wavenumber is varied from β = 0.025 to 0.135 and the
frequency from ω = 0.006 to 0.046. The thick lines denote the spanwise wavenumber and frequency combination that
first reaches (green) NE = 5 (β = 0.080, ω = 0.024) and (red) NE = 10 (β = 0.040, ω = 0.012).

As described in Refs. [18, 19], the basic state is obtained from a numerical solution of the NS equations,
which account for both the viscous-inviscid interaction near the leading edge and the weak shock wave
emanating from that region. The leading edge radius is set to rn = 1 µm and the freestream unit Reynolds
number to Re′ = 106/m. The effects of the viscous-inviscid interaction and the shock wave translate into
a deviation from the self-similar solution, as noted by Paredes et al.18,19 The streamwise velocity and
temperature profiles converge to the self-similar solution with R > 100. These effects produce a maximum
9% deviation from transient growth results based on self-similar base flow when the initial optimization
position is located near the leading edge.

Transient growth results corresponding to the basic state obtained from NS equations is shown in Figure
2(a) for R1 = 1, 000 with x1 = L = 1 m as the final optimization position. The initial location that leads to
maximum energy gain up to R1 = 1, 000 corresponds to R0 = 500 (x0 = 0.25).18,19 As shown in Fig. 2(a),
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the maximum gain occurs at a spanwise wavenumber of β = 0.3. The optimal initial perturbation, q̂0, and
the perturbation at the final optimization location, q̂1, for the above wavenumber are shown in Figs. 2(b)
and 2(c), respectively.
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(a) Optimum energy gain
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(b) Initial perturbation
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(c) Final perturbation

Figure 2. Optimal energy gain in the adiabatic, Mach 3 flat plate boundary layer with initial and final disturbance
locations at R0 = 500 and R1 = 1, 000, respectively. Also, initial and final amplitude vectors with β = 0.3. The amplitude
vectors are normalized with local energy norm Ê as defined in Eq. (6).

The nonlinear form of the plane-marching PSE is used to monitor the nonlinear development of the initial
disturbance from Fig. 2(b). Figure 3(a) shows the evolution of the streak amplitude based on u,

Asu(ξ) = [maxη,ζ(ũ(ξ, η, ζ))−minη,ζ(ũ(ξ, η, ζ))]/2, (11)

for selected amplitudes of the optimal inflow perturbation. Unlike the energy norm in Eq. (4), the velocity
amplitude Asu can be measured in wind tunnel experiments (at least up to moderately high Mach numbers).
It is also expected to have a more direct connotation for the growth of streak instability. The streak amplitude
parameter A corresponds to the maximum streak amplitude Asu achieved by a linear perturbation with the
same initial amplitude, which is given by

A0 = A×
√
Elin,A=1, (12)

with Elin,A=1 = 1.79 × 10−2. As indicated by Eq. (12), the amplitude parameter A provides a convenient
measure of the initial disturbance amplitude. As seen in Fig. 3(a), the nonlinear effects reduce the streak
amplitude relative to the linear prediction; and hence, for any given case, max(Asu) < A. This maximum
moves progressively upstream as the amplitude parameter A is increased. In the incompressible case, a similar
trend was observed by Andersson et al.45 with direct numerical simulations and by Martin & Martel46 with
boundary region equations. Figures 3(b) and 3(c) show the streamwise evolution of the massflux contours
for the A = 0.41 and A = 1.38 streaks, respectively. At the symmetry plane, z = Lz/2, the near-wall,
low-momentum fluid is lifted upward by the counter-rotating vortices, resulting in a localized region of large
boundary layer thickness and lower wall shear, τw = µ(∂u/∂y)w, where the subscript w refers to the wall
location (yw = 0). At the lateral symmetry plane, z = 0 (and z = Lz), the effect of the initial streamwise
vortices is exactly the opposite, yielding a localized region of reduced boundary layer thickness and increased
wall shear. A comparison of Figs. 3(b) for A = 3 and 3(c) for A = 10, shows that the higher streak amplitude
leads to a more complex flow pattern in the form of a mushroom-like flow structure.

To assess the effect of the nonlinear stationary disturbances on transition, the PDE-based EVP analysis is
used in conjunction with the linear form of the plane-marching PSE to investigate the instability of the Mach
3 flat plate boundary layer flow modified by spanwise periodic streaks. The PDE-based EVP analysis is used
to obtain the growth rates of fundamental and subharmonic sinuous and varicose modes at R = 1, 000 for
the streaks shown in Figure 3(a). These instabilities are supported by the detached three-dimensional shear-
layer formed by the streaks. Results for the instability modes corresponding to the fundamental spanwise
wavenumber, i.e., equal to the spanwise wavenumber of the streak, and subharmonic instability modes with
double spanwise wavelength, i.e., half spanwise wavenumber, are shown in Fig. 4 for the streaks initiated
at R0 = 500 with a spanwise wavenumber of β = 0.30. Local growth rates at R = 1, 000 are plotted as a
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Figure 3. (a) Evolution of streak amplitudes based on u, Asu, of finite-amplitude streaks initialized at the optimal
initial position, R0 = 500, with β = 0.30. (b,c) Isolines of streamwise massflux, ρ̄ū, for the A = 0.41 and A = 1.38 streaks.

function of disturbance frequency in Fig. 4. For reference, the growth rates of the first mode instabilities for
the unperturbed flow (A = 0), corresponding to the same wavenumber as the streak (FM1), i.e., β = 0.3,
and to one half of the streak wavenumber (FM1/2), i.e., β = 0.15, are also included in Figs. 4(a) and 4(b),
respectively. For the spanwise wavenumber of β = 0.3, the first mode is stable at R = 1, 000, but for the
subharmonic case, the first mode with β = 0.15 is unstable at R = 1, 000. A thorough study of the interaction
of low to moderate amplitude streaks with the oblique first mode instability is presented by Paredes et al.47

As previously observed in the incompressible regime,45 the sinuous (S) mode is found to become unstable at
lower streak amplitudes than those required for the onset of the varicose (V) mode. Specifically, the threshold
streak amplitude for the S mode is found to be approximately Asu ≈ 0.2. The threshold amplitude for the
V mode is significantly higher, equal to Asu ≈ 0.35. Figure 4(b) indicates that, similar to the fundamental
wavelength modes in Fig. 4(a), the growth rates of subharmonic modes increase with the streak amplitude
and the subharmonic sinuous (SS) modes are more unstable than the subharmonic varicose (SV) modes. The
SS mode converges to the FM1/2 mode as A is decreased. Therefore, there is no streak amplitude threshold
for SS modes. While the peak growth rates of the SS modes are lower than their fundamental counterparts,
the SV modes have slightly larger growth rates than the corresponding fundamental modes. Of course,
because of the complex dependence of the secondary growth rate on the structure of the streak, one must
investigate the overall amplification of the various disturbance modes in order to assess their relative roles
during the transition process. Results on this type are presented later in this section.

The magnitude of the streamwise velocity shape functions, |û|, for the S and V modes are plotted in Fig. 5
for the streamwise location of R = 1, 000. The SS and SV mode shapes in Fig. 6 are very similar to the mode
shapes of corresponding fundamental modes in Fig. 5. However, the relative phase distributions associated
with the fundamental and subharmonic modes are rather different. Whereas the phase distributions within
adjacent streaks are identical to each other in the case of fundamental modes, those of the subharmonic
modes are antisymmetric, i.e., correspond to mirror images of each other; see Paredes et al.31 for more
details. The close alignment between the locations of peak instability fluctuations and the critical layer
surface indicates that these instability modes are related to the instability of the three-dimensional shear
layer.

Next, we examine the spatial evolution of fixed frequency secondary disturbances in terms of the N -factor
definition of Eq. 10. N -factor curves for sinuous modes (S and SS) at selected frequencies are plotted in Fig. 7.
The predictions for S modes are plotted in Fig. 7(a), whereas those corresponding to SS modes are shown
in Fig. 7(b). Over the range of frequencies plotted in Figs. 7(a) and 7(b), the SS modes become unstable
at a farther upstream station. More important is the fact that the SS modes that first achieve N-factors
of between 5 and 14 are expected to correlate to the onset of transition in a broad range of disturbance
environments. The S modes first become unstable at a streamwise position that is downstream of the streak
initialization at R0 = 500. On the other hand, the SS modes originate upstream of R0 = 500 as first mode
instabilities of the unperturbed boundary layer and then morph into the shear layer modes as the streak
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Figure 4. Growth rates (σ = −αi) of (a) fundamental sinuous (S) and varicose (V) modes and (b) subharmonic sinuous
(SS) and subharmonic varicose (SV) modes of finite-amplitude streaks initialized at the optimal initial position, R0 = 500,
with β = 0.30, computed with PDE-based EVP. The analysis is performed at location R = 1, 000.
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|û|

Figure 5. Isocontours of the modulus of streamwise velocity fluctuations associated with the (a,c) S and (b,d) V modes
of the streaks with (a,b) amplitude A = 0.41 and frequency ω = 0.09 and (c,d) amplitude A = 0.69 and frequency ω = 0.11.
The isolines of basic state mass flux ρ̄ū = 0.1 : 0.1 : 0.9 are included. Also, the critical layer, ū = cph, where cph = ω/αr is
the phase speed of the instability wave, is added for reference with thick solid blue lines.
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Figure 6. Isocontours of the modulus of streamwise velocity fluctuations associated with the (a,c) SS and (b,d) SV
modes of the streaks with (a,b) amplitude A = 0.41 and frequency ω = 0.09 and (c,d) amplitude A = 0.61 and frequency
ω = 0.10. The isolines of basic state mass flux ρ̄ū = 0.1 : 0.1 : 0.9 are included. Also, the critical layer, ū = cph, where
cph = ω/αr is the phase speed of the instability wave, is added for reference with thick solid blue lines.
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Figure 7. N-factors based on E of (a) S and (b) SS instability modes computed with plane-marching PSE for the
streaks initiated at R0 = 500 with β = 0.30 and streak amplitude parameter A = 0.41.

N -factor contours in the Rex - Ê0 plane corresponding to fundamental and subharmonic, sinuous, in-
stability modes are plotted in Fig. 8. The displayed N -factor values are NE = 5, 10, and 15. A minimum
threshold initial streak amplitude is required to reach any N -factor value between NE = 5 and NE = 15.
For the purpose of discussion, the N -factor curve corresponding to NE = 5 may be assumed to represent
the expected variation of transition onset location in a relatively noisy disturbance environment such as a
conventional ground facility, whereas the curve NE = 10 may be assumed to correspond to a quiet tunnel
or a flight disturbance environment. All N -factor curves in Fig. 8 have a large negative slope to begin with
and approach a nearly horizontal asymptote further downstream. This implies a rapid upstream movement
in transition onset once a threshold streak amplitude is exceeded and, also, an approximate saturation in
the transition front location after a sufficiently high streak amplitude has been reached. In a noisy environ-
ment, the initial streak amplitude required to induce bypass transition via streak instabilities corresponds
to Ê0 ≈ 1.4× 10−5, i.e., Asu,max ≈ 0.13. The corresponding streak amplitude levels for a quiet environment

(NE = 10) are Ê0 ≈ 5.0 × 10−5, i.e., Asu,max ≈ 0.22. Thus, regardless of the disturbance environment, a

relatively narrow range of minimum streak amplitudes (1.4×10−5 < Ê0 < 5.0×10−5) can bring about bypass
transition via streak instabilities. Not surprisingly, the effect of streaks on upstream movement in transition
is somewhat weaker in the case of a noisy environment, in that the asymptote corresponding to high streak
amplitudes corresponds to a projected transition onset location of xtr/xtr(Asu=0) ≈ 0.36, whereas large am-
plitude streaks in a quieter unsteady environment can advance the onset of transition as far upstream as
xtr/xtr(Asu=0) ≈ 0.12. Even though instabilities of streaks with an initial amplitude of Ê0 < 1.5× 10−5 can
reach NE = 5, the spatial location where this N -factor is reached is downstream of the location where first
mode instabilities in the unperturbed boundary layer reach the same N-factor. Thus, streaks with an initial
amplitude of Ê0 < 1.5 × 10−5 are unlikely to induce transition in noisy environments. This initial streak
amplitude may, therefore, be viewed as the critical value for an upstream movement in transition location
in these environments.

III.B. Mach 6 Circular Cone Boundary Layer

Next, we examine the role of finite amplitude streaks in inducing bypass transition in the axisymmetric
boundary layer over a 7◦ circular cone in Mach 6 free stream. The length of the nearly sharp cone is
L = 0.305 m and the nose radius is rn = 0.126 mm. The freestream conditions are selected to replicate those
of a previous experiment in the VKI H3 hypersonic tunnel,48 i.e., Mach 6 flow at a unit Reynolds number of
18× 106/m, and freestream temperature of Tr = 60.98 K. For this problem, the computational coordinates,
(ξ, η, ζ), are defined as an orthogonal body-fitted coordinate system. The metric factors are defined as

h1 = 1 + κη, (13)

h2 = 1, (14)
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Figure 8. N-factor based on energy norm (NE = 5, 10, and 15) of fundamental (solid lines) and subharmonic (dashed
lines) sinuous, secondary instability modes on a Mach 3 flat plate boundary layer perturbed by optimal streaks with

initial energy of Ê0 = 1/Lz E0 initiated at R0 = 500. The vertical dot-dashed line denotes the transition location based
on NE = 5 (dot-dashed line) of first oblique mode in the unperturbed flow.

h3 = rb + η cos(θ), (15)

where κ denotes the streamwise curvature, rb is the local radius, and θ is the local half-angle along the
axisymmetric surface, i.e., sin(θ) = drb/dξ. For the present straight circular cone (with exception of the nose
region that is not included in this analysis), κ ≡ 0 and θ is the half-angle of the cone equal to 7◦. Note that
the spanwise wavenumber β of Eq. (1) with 1/L dimensions, becomes a nondimensional, integer azimuthal
wavenumber, denoted by m.

Experimental measurements and theoretical predictions based on quasi-parallel, linear stability theory
(LST) and the non-parallel, PSE have confirmed that laminar-turbulent transition in this flow is driven by
the modal growth of planar Mack mode instabilities.48 The instability of the unperturbed flow is examined
by PSE to establish the transition behavior in the absence of stationary streak perturbations. The onset of
laminar-turbulent transition in the unperturbed boundary layer flow is estimated using N -factor evolution
of the planar Mack modes computed with the PSE. For the conditions of the experiment,48 transition onset
in the unperturbed cone boundary layer was measured to occur near x/L = 0.6. Figure 9 shows that the
peak N -factor at the measured transition location corresponds to NE = 6, which is reached by a planar
Mack mode disturbance with frequency F = 550 kHz.
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Figure 9. PSE predictions for N-factor based on energy norm E of planar second mode disturbances in an unperturbed
Mach 6 circular cone boundary layer. The frequency is varied from F = 350 kHz to 800 kHz. The thick red dashed line
denotes the frequency that first reaches NE = 6 (F = 550 kHz). The vertical black dot-dashed line denotes the measured
transition location.48

Here, we consider an initial disturbance location of x0/L = 0.2 and a final location of x1/L = 0.4.
Figure 10(a) shows that the optimal azimuthal wavenumber that leads to a maximum energy gain, G =
E(x1)/E(x0), is found to be m = 50. For these parameters, the optimal energy gain in the limit of in-
finitesimal streak amplitudes is G = 4, 017. The components of the initial and final optimal perturbations
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are plotted in Figs. 10(b) and 10(c), respectively. The range [x0, x1] has been chosen to obtain appreciable
streak amplitudes over a majority of the cone length as shown in Fig. 11. As in the Mach 3 flat plate case,
the streak amplitude parameter A corresponds to the maximum streak amplitude Asu achieved by a linear
perturbation with the same initial amplitude, which is given by Eq. (12), with Elin,A=1 = 6.01 × 10−3 in
the present case. The effect of nonlinearity on the streak evolution is very similar to that in the Mach 3 flat
plate case, namely, a reduction of the streak amplitude relative to the linear prediction and an upstream
displacement of the location corresponding to the maximum streak amplitude for each A.
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Figure 10. Optimal energy gain in the Mach 6 circular cone boundary layer with initial and final disturbance locations
at x0/L = 0.2 and x1/L = 0.4, respectively. Also, initial and final amplitude vectors with m = 50. The amplitude vectors

are normalized with local energy norm Ê as defined in Eq. (6).
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Figure 11. Evolution of streak amplitudes based on u, Asu, of finite-amplitude streaks initialized at the x0/L = 0.2 with
m = 50.

The PDE-based EVP analysis is used to obtain the growth rates of fundamental and subharmonic sinuous
and varicose modes at x/L = 0.5 for the selected streak amplitudes from Fig. 11. Figure 12 shows the local
growth rates as a function of disturbance frequency. For reference, the growth rates of the first mode
instabilities for the unperturbed flow (A = 0), corresponding to the same wavenumber as the streak (FM1),
i.e., m = 50, and to one half of the streak wavenumber (FM1/2), i.e., m = 25, are also included in Figs. 12(a)
and 12(b), respectively. The first mode is unstable for both m = 25 and m = 50 and the corresponding
sinuous modes are observed to emerge from the first mode as the streak amplitude is increased from zero,
this behavior being similar to that in the supersonic flat plate case. Again, the sinuous modes are more
unstable than the varicose modes. The mode shapes of the S, V, SS, and SV modes are rather similar to
those in Figs. 5 and 6 for the Mach 3 flat plate case. Therefore, the mode shapes for the present case are
omitted from this section. Further results for a wider range of streak amplitudes and instability frequencies,
including the effect of the finite-amplitude streaks on the second mode instability, can be found in Paredes
et al.32,49
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Figure 12. Growth rates (σ = −αi) of (a) fundamental sinuous (S) and varicose (V) modes and (b) subharmonic sinuous
(SS) and subharmonic varicose (SV) modes of finite-amplitude streaks initialized at x/L = 0.2 with m = 50, computed
with PDE-based EVP. The analysis is performed at location x/L = 0.5.

N -factor calculations are presented next for the S and SS instability modes by using the linear form
of the plane-marching PSE. As shown by Paredes et al.,32 the N -factor curves corresponding to S and SS
modes show a similar trend as that in Fig. 7 for the Mach 3 flat plate boundary layer. The S modes first
become unstable at a streamwise position that is downstream of the streak initialization. On the other
hand, the SS modes become unstable upstream of the initial streak location (x0/L = 0.2). Therefore, they
are initiated as first mode instabilities of the unperturbed boundary layer and then morph into the shear
layer modes as the streak amplitude increases with x. The N -factor contours corresponding to S and SS
modes in Fig. 13 are also in line with previous predictions for the Mach 3 flat plate case. In this case, the
N -factor contours displayed in Fig. 13 correspond to NE = 6, 10, and 14. For the purpose of discussion,
the N -factor curve corresponding to NE = 6 is assumed to represent the expected variation of transition
onset location in a relatively noisy disturbance environment such as a conventional ground facility, whereas
the curve NE = 10 may be assumed to correspond to a quiet tunnel or a flight disturbance environment.
The N -factor value of NE = 6 is chosen as the noisy disturbance level, because as shown in Fig. 9 the
measured transition location48 corresponds to this value for the unperturbed boundary layer flow. The
N -factor curves exhibit a similar trend to that observed in the Mach 3 case, with a large negative slope
to begin with and then the slope decreases downstream. Again, the subharmonic instability mode reaches
the N -factor threshold in a noisy disturbance environment at lower streak amplitudes, but the NE = 10
threshold is first reached by the fundamental secondary instabilities. For the highest streak amplitude plotted
in the figure, A = 0.8 (Asu,max = 0.49), the onset of transition in a low amplitude disturbance environment
moves upstream to xtr/L = 0.42 (xtr/xtr(Asu=0) ≈ 0.7). The initial streak amplitude needed for bypass

transition is Ê0 > 7.5×10−3, which corresponds to a streak amplitude parameter of approximately A > 0.40
(Asu,max > 0.34).

IV. Conclusions

This paper investigated a potential scenario for bypass transition via optimal transient growth in a super-
sonic, flat plate boundary layer at Mach 3 and in a hypersonic, 7◦ half-angle circular cone, boundary layer at
Mach 6. The proposed transition mechanism involves modal versus transient amplification of secondary dis-
turbance supported by the finite-amplitude streaks arising as a result of the transient growth. For both flows
considered, the sinuous instability modes are found to be more amplified than varicose instability modes.
While the mode shapes associated with streak instabilities are similar to those found in low-speed boundary
layers, the present analysis shows that the nature of dominant streak instabilities can be rather different in
high-speed boundary layers. To the best of our knowledge, the present set of results constitutes the first
demonstration of subharmonic spanwise wavelengths of streaky motions in boundary layers flows being more
strongly unstable than the streak instabilities with fundamental spanwise wavelengths. The subharmonic
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Figure 13. N-factor based on energy norm (NE = 6, 10, and 14) of fundamental (solid lines) and subharmonic (dashed
lines) sinuous, secondary instability modes on a Mach 6 circular cone boundary layer perturbed by optimal streaks with

initial energy of Ê0 = 1/Lζ E0 initiated at x/L = 0.2. The vertical dot-dashed line denotes the transition location based
on NE = 6 of planar second mode in the unperturbed flow.

modes control the onset of transition at smaller initial streak amplitudes, whereas the fundamental secondary
modes take over beyond a threshold streak amplitude. The rather unique behavior of subharmonic mode
amplification is shown to be related to the destabilizing influence of small amplitude streaks on oblique first
mode disturbances, which tend to have longer spanwise wavelengths than those of the optimal stationary
disturbances.
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