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With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio
airspace design will require new approaches to trajectory prediction for separation assurance and other air
traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of
an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum
entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to
sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft’s intent. The model
learning process ensures that the variability in this ensemble reflects the behavior observed in the original data
set. Computational examples are presented.

Nomenclature

E[·] expectation
Φ set of feature functions
H[·] histogram
L number of feature functions
Λ set of Lagrange multipliers
Ω support set of trajectories
R set of real numbers
Robs set of observed trajectories
Rsyn set of synthetic trajectories
S Shannon entropy
T number of time steps
d separation distance from airspace hazard
φ(·) feature function

f (·) true probability distribution
i feature function index
k time index
λ Lagrange multiplier
µ sample mean approximation
p(·) maximum entropy probability distribution
r yaw rate [deg/s]
r yaw rate trajectory vector
t time [s]
u position of airspace hazard
v velocity [kt]
x position [nmi]
ψ yaw angle [deg]

I. Introduction

The ability to accurately predict the trajectory of an aircraft is the cornerstone of many air traffic management
(ATM) functions. Trajectory prediction enables functions such as the detection of traffic conflicts between aircraft,
which is critical for separation assurance, as well as the calculation of the estimated time of arrival of an aircraft at a
given position, important for schedule and flow management.

Trajectory prediction (also called trajectory generation) is at the core of most ATM automation systems under
development, and much work has been devoted to the problem of accurate trajectory prediction in this context.1–3 The
standard approach to trajectory prediction in ATM is constructed on the basis of a nominal trajectory plus some method
to account for uncertainty due to factors such as wind4 and variations in vehicle performance.5

The nominal trajectory is based on a notion of the ideal trajectory intent of an aircraft in the absence of any
uncertainty. In today’s operations, this intent is derived from the aircraft’s flight plan or current clearance and usually
takes the form of a series of speeds, headings, and altitudes to be flown in sequence. A trajectory prediction algorithm
may employ this intent information in a simplified kinematic motion model,6 or in a physics-based aircraft performance
model such as the Base of Aircraft Data.7

Trajectory prediction will be even more important to the many new and unconventional uses of the airspace that
are expected in the coming years. Of immediate concern is proliferation of unmanned aircraft systems (UAS) in
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the national airspace in the next decade. A huge variety of missions have been proposed for these vehicles, ranging
from environmental monitoring, infrastructure inspection, search and rescue, and package delivery. Looking further,
advances in UAS technology may enable a revolution in personal air vehicles (PAVs) operating in an on-demand,
point-to-point fashion. In both the UAS and PAV applications, we can envision large numbers of vehicles routinely
operating at closer proximity to each other, as well as to buildings and people on the ground, than is acceptable in civil
aviation today.

If we take an ab initio8 approach to the design of an airspace system to accommodate such density and diversity
of new vehicles and missions, we are faced with the issue that the trajectory prediction and separation assurance
approaches to managing today’s traffic will not be sufficient in this new world. This paper attempts to address two
factors here.

First, we can conceive of many circumstances where an aircraft’s trajectory intent is unavailable or unreliable. In
such cases, it will be necessary to incorporate the uncertainty of intent into the trajectory prediction. With a probabilistic
model of an aircraft’s intent, a trajectory prediction algorithm can make more accurate predictions of the range of likely
future positions of that aircraft, with applications to separation assurance, airspace complexity management, and other
important functions.

Second, with the diversity of aircraft that may be expected in the future, it may not be practical or feasible to build
such a model by hand for each aircraft type in each operational scenario. Instead, we propose a data-driven approach
to learning a probabilistic model of intent behavior from a set of observed trajectories. Such a learning process could
be conducted off-line from a database of trajectories to build an initial model, and then updated in real time based on
observations made in flight. Such an approach could be conducted automatically in an unsupervised fashion.

With these goals in mind, this paper describes a preliminary approach to probabilistic trajectory prediction with
uncertain intent. The paper describes a modeling process employing a set of feature functions to constrain a maximum
entropy probability distribution based on a set of observed trajectories. New trajectories are then sampled from this
model in a series of experiments to demonstrate the ability to reproduce the observed aircraft behavior. In future work,
this model is intended for application to derive a dynamic separation volume, yielding the optimal separation distance
between two aircraft in a given encounter.

II. Background

The proposed approach to trajectory modeling is a generative model. A generative model in probability and
statistics is one that allows for the generation of sample observations from a distribution of interest. Compare with a
discriminative model, which allows for the classification between given samples. For instance, in an image processing
context, a discriminative model may allow for the classification of a set of images into different categories, e.g., cats,
dogs, trees, apples, etc. Whereas, a generative model may allow the generation of new images with the characteristics
of a given category, e.g., the generation of new and previously unobserved images in the category of human faces.9 This
generative process is sometimes referred to as “hallucination” or “dreaming,” since the computer algorithm synthesizes
new and recognizable images that were not part of the training set.10

Generative models have unique advantages in problems of prediction. In the problem of air traffic trajectory
prediction, we can draw sample trajectories from such a model and use them as the basis for probabilistic conflict
detection and other functions. In this Monte Carlo approach to trajectory prediction, the samples form an ensemble of
predictions representing the variability of the future trajectory of an aircraft. For instance, by comparing the ensembles
between two aircraft, we can obtain a distribution of their closest point of approach, and derive the probability that
this distance will be below a certain allowable separation standard. If this probability is above a given threshold, the
aircraft can be alerted to initiate appropriate action.

Such an application will only be as successful as the goodness of the model generating the ensemble. The
development of techniques to build useful and accurate generative models for complex phenomena is an ongoing area
of research in many fields. This paper is inspired by computer vision work in texture modeling and related problems. In
particular, the Filters, Random Fields, and Maximum Entropy method by Zhu et al.11 applied a set of feature functions
to constrain a maximum entropy probability distribution, leading to a model which reproduced the characteristics of
texture patterns from natural images. The feature-constrained maximum entropy approach has been used in number of
other applications.12–16

The basic process of feature-constrained maximum entropy model learning is employed here, with application to
the yaw rate trajectory of an aircraft. By applying this modeling approach to aircraft trajectories, we seek to produce a
model which generates new trajectories with the same statistical characteristics of the observation data set. The present
application is restricted to the 2D, constant speed motion of an aircraft, but future work will expand to full trajectories.
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III. Methodology

A. Aircraft trajectory representation

Consider the 2D, horizontal trajectory of an aircraft traveling at constant speed v in an inertial frame with no wind.
Under these assumptions, we can parameterize the trajectory via the yaw rate r as a function of time t. The relationship
between r (t) and the position x(t) is

ẋ(t) = v(t) (1)
v(t) = [v cosψ(t), v sinψ(t)] (2)
ψ̇(t) = r (t) (3)

where the position x and velocity v are vectors in R2 and ψ is the yaw angle in R.
We approximate the continuous trajectory by discretizing r (t) as

r = [r1, r2, . . . , rk , . . . , rT ] (4)

where r is a vector in RT whose elements rk are the yaw rate samples at time indices k ∈ {1, 2, . . . ,T }. Given r, the
position history {xk } can be obtained through discrete time integration of Eqs. (1–3). The forward Euler method was
used for simplicity in all of the results in this paper.

B. Maximum entropy probability distribution

The following presentation is written in terms of r in order to make clear the connection to the yaw rate trajectories of
interest in this paper. However, the general development here is applicable to any real-valued vector.

Let Ω be the support set of possible yaw rate trajectories in a given circumstance, e.g., of the aircraft of a given
type in a given airspace. These trajectories are random, and we assume the existence of an unknown true probability
distribution f (r) that is the source of this randomness. Let Robs = {r1, r2, . . .} ⊂ Ω be a set of observed trajectories
assumed to have been drawn from f (r).

Let Φ = {φ1, φ2, . . . φi , . . . φL } be a set of feature functions φi : RT → R. (Subscript i will be used to index these
features throughout the paper.) Each feature is a function that maps the T-dimensional yaw rate trajectory vector to a
scalar value. For each feature, we can define its true expectation with respect to f (r) as

E f [φi (r)] =
∫
Ω

f (r)φi (r)dr , i = 1, 2, . . . , L (5)

Although f (r) is unknown, assume that we know the value of each true feature expectation. We seek to approximate
f (r) by a distribution p(r) whose feature expectations match those of the true distribution:

Ep[φi (r)] = E f [φi (r)] , i = 1, 2, . . . , L (6)

If Eq. (6) is true for many such features, then p(r) is a functional approximation for f (r).
There are many possible distributions that satisfy the constraints of Eq. (6), and so the problem becomes how to

choose from among them. The principle of maximum entropy suggests we choose the distribution that assumes the
least additional information beyond what is known. Hence, the problem is to choose the distribution that maximizes
Shannon’s entropy,

S = −
∫
Ω

p(r) log p(r)dr (7)

subject to the feature constraints.
The solution to this problem is of the form of the well-known Gibbs distribution

p(r;Λ) =
1

Z (Λ)
exp *

,
−

L∑
i=1

λiφi (r)+
-

(8)

whereΛ = {λ1, λ2, . . . , λi , . . . , λL } is a set of Lagrange multipliers and Z (Λ) is a normalizing constant. IfΛ is chosen
such that the feature constraints in Eq. (6) are satisfied, then p(r;Λ) is the maximum entropy (maxent) distribution
subject to those constraints.
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C. Feature histograms

Since r is considered here as a random variable, so is φi (r) a random variable with its own distribution. The above
formulation uses the true expectation of each scalar feature distribution to constrain the maxent distribution. However,
this expectation only captures the mean of each feature, whereas higher-order information about its distribution is lost.
We may also want to incorporate features of higher dimensionality, e.g., a feature that maps r to another vector rather
than a scalar.

To better represent the complete distribution of each feature in the maxent model, we will instead constrain the
model to match the histogram of each feature over Robs. This amounts to introducing new scalar features corresponding
to the value of each bin in each feature histogram.

Let h(y, z) be the value of the normalized histogram applied to the elements of a vector y = [y1, y2, . . . , yM ] ∈ RM

over the bin defined by the half-open interval z = [zmin, zmax) ⊂ R. This value is

h(y, z) =
1
M

M∑
i=1

Iz (yj ) (9)

Iz (y) =



1 if y ∈ z

0 if y < z
(10)

The complete histogram vector of y over a set of bins Z = {z1, z2, . . . , zB} is

H (y) = [h(y, z) | z ∈ Z] ∈ RB (11)

Now, we redefine each feature function as φi : RT → RM , where M may be different for each feature. (If M = 1,
then the feature is a scalar function as in the previous derivation.) Then, H[φi (r)] is the complete histogram of the
feature response vector φi (r). Substituting feature histograms for the features in the previous derivation, Eqs. (6) and (8)
become

Ep {H[φi (r)]} = E f {H[φi (r)]} , i = 1, 2, . . . , L (12)

p(r;Λ) =
1

Z (Λ)
exp *

,
−

L∑
i=1
〈λi , H[φi (r)]〉+

-
(13)

where λi ∈ RB is a vector of Lagrange multipliers corresponding to feature i and 〈 · , · 〉 denotes the scalar product of
two vectors.

Since the true distribution f (r) is unknown, we cannot compute the true expectation E f {H[φi (r)]} exactly.
However, it can be approximated using the sample mean of the feature histograms over Robs. Likewise, Ep {H[φi (r)]}
can be approximated by the sample mean over a set of synthetic observations Rsyn sampled from p(r;Λ):

E f {H[φi (r)]} ≈ µobs
i =

1
Nobs

∑
j

H[φi (rj )] , i = {1, 2, . . . , L}, rj ∈ Robs (14)

Ep {H[φi (r)]} ≈ µ
syn
i =

1
N syn

∑
j

H[φi (rj )] , i ∈ {1, 2, . . . , L}, rj ∈ Rsyn (15)

Here, µobs
i and µ

syn
i are vectors of dimension B whose elements are the sample mean approximations to the expected

value of the corresponding bins in each feature histogram, derived from the samples in Robs and Rsyn respectively. The
values Nobs and N syn are the number of samples in Robs and Rsyn respectively.

D. Learning Λ

In order to draw samples from Eq. (13), we must find the set Λ of Lagrange multiplier vectors λi that satisfies Eq. (12)
using the sample mean approximations in Eqs. (14) and (15). This can be accomplished through an iterative gradient
ascent procedure described in Algorithm 1.

First, µobs
i is calculated from Eq. (14) for each pre-defined feature. Then, all λi in Λ are initialized to zero vectors

of appropriate length. At each step j, samples Rsyn are drawn from Eq. (13) by Gibbs sampling (Algorithm 2) with the
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current Λ. The value of µsyn
i is calculated from Eq. (15) using the new samples in Rsyn. Finally, Λ is updated at the

end of each step according to

λ ( j+1)
i = λ ( j)

i − α
(
µ

syn
i − µobs

i

)
, i = 1, 2, . . . , L (16)

where α is a step factor controlling the speed of convergence. This process is repeated until the distance between the
observed and synthetic features histograms is sufficiently small:

µ
syn
i − µobs

i
 < ε (17)

This process iteratively adjusts the Lagrange multipliers until the feature histograms of the synthetic samples from
the maxent distribution match those of the observed samples from the true distribution. The Lagrange multipliers
effectively weight the bins of each feature histogram to satisfy the constraints in Eq. (12). Once the algorithm has
produced a good Λ, the distribution p(r ;Λ) is completely determined and can be used for sampling applications.

Algorithm 1Maxent model learning.

Require: Robs, Φ
1: µobs

i ← Eq. (14)
2: λi ← 0, i = 1, 2, . . . , L
3: repeat
4: Gibbs sample Rsyn from p(r;Λ) (Algorithm 2)
5: µ

syn
i ← Eq. (15)

6: λi ← λi − α(µsyn
i − µobs

i )
7: until ‖µsyn

i − µobs
i ‖ < ε

8: return Λ

E. Gibbs sampling

The Λ-learning process and applications of the maxent distribution require the ability to draw samples from p(r;Λ) in
Eq. (13). This is generally difficult, especially if the dimensionality of r is large. There are a number of methods to
sample from difficult distributions of high dimensionality. This paper uses the Gibbs sampling method. The principle
of Gibbs sampling is that it is easier to sequentially sample from a series of one-dimensional conditional distributions
than it is to sample directly from the highly dimensional joint distribution.

The Gibbs sampling procedure is briefly described here in Algorithm 2. Begin with an initial value of r. In this
paper, r is initialized to a vector of random noise. At each step j, choose one element rk of r( j) at random. Next, draw
a new sample for rk from the marginal distribution

rk ∼ p(rk | r1, r2, . . . , rk−1, rk+1, . . . , rT ;Λ) (18)

Equation (18) is approximated by a histogram obtained by substituting a discretized range of values for rk into
Eq. (13) while holding r1, r2, . . . , rk−1, rk+1, . . . , rT constant at their current values. (The constant Z (Λ) can be set to 1
and ignored in this evaluation.) The value of Eq. (18) for each value of rk is used to form a categorical distribution
from which to draw a new rk . The new rk is then substituted into r( j) to yield r( j+1) . When this process is repeated
many times, the sequence of r( j) vectors constitutes a set of samples from p(r;Λ).

Algorithm 2 Gibbs sampling.
Require: Λ, r
1: for j = 1 to n do
2: Choose k uniformly at random from {1, 2, . . . ,T }
3: P ← { p([r1, r2, . . . , rk , . . . , rT ];Λ) | rk ∈ {rmin, . . . , rmax} }
4: P ← P/ΣP (normalization)
5: Draw rk from categorical({rmin, . . . , rmax}; P)
6: r← [r1, r2, . . . , rk , . . . , rT ]
7: end for
8: return Sequence of r values

5 of 12

American Institute of Aeronautics and Astronautics



IV. Experiments

A. Observed trajectories

While the intent is to apply this method to a set of real-world air traffic trajectory data, the preliminary application in
this paper uses a set of randomly generated surrogate data for simplicity. The trajectories generated by this model serve
as the observations in Robs.

Observed yaw rate trajectories are generated according to a procedure that produces a series of segments alternating
between straight-and-level flight and level turns of random rate and duration. Figure 1 shows an example trajectory
generated by this model. Positive yaw rates indicate left (counter-clockwise) turns. Each aircraft is initialized with
initial position x = [0, 0] nmi and velocity v = [400, 0] kt in the eastward direction. Since only the yaw rate is varied
in this model, each aircraft always travels with a constant speed of 400 kt. All examples and results in this paper use
T = 100 time steps over a duration of 600 s for each trajectory.
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(a) Yaw rate trajectory in time.
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(b) Horizontal trajectory in space. Initial position
and heading are marked by the chevron.

Figure 1: Example aircraft trajectory in Robs.

A total of 10,000 trajectories were generated to constitute Robs. Figure 2a shows a 2D histogram of the horizontal
positions of these trajectories at all sample times. The numeric value of the color scale is the number of points found in
each cell divided by the total number of positions in the given set. Note the color scale is logarithmic. Black indicates
areas where no aircraft flew. The highest intensity (yellow) is concentrated from the origin on an eastward trajectory.
The orange space indicates the “fan” of trajectories spreading out from the initial position in either direction. The
darker, purple areas behind the origin show the rare aircraft that managed to turn around and start flying westward.
The fraction of points in the dark areas behind the origin (10−5 to 10−6) is much smaller than in the bright areas ahead
of it (10−2 to 10−3).

Figure 2b shows the same but only for the positions of the aircraft at the final time step (t = 600 s). The histogram
reveals that after 10 min of flight, an aircraft in this data set is more likely to be found somewhere ahead of its initial
position at a range of about 60 nmi. This is not surprising since the maximum range of an aircraft traveling at a constant
speed of 400 kt over 10 min is 66.7 nmi.

Although these histograms are but one way of visualizing the statistical characteristics of the observation set, we
would expect the synthetic observations generated by through the maximum entropy distribution modeling process to
yield similar results if p(r;Λ) is a good approximation for f (r).

B. Feature selection

The modeling process described here requires a set of feature functions to capture statistical behavior found in the
observed trajectories. We can conceive of a wide variety of potential features, capturing information about the statistical
variability of each aircraft’s course, altitude, and speed, possibly conditioned on the type of aircraft and phase of flight.
We can also propose characteristics of the overall traffic pattern such as the density of aircraft in a given region, the
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(b) Aircraft positions at t = 600 s.

Figure 2: Histograms of aircraft positions for trajectories in Robs. Initial position and heading marked by the chevron.

typical separation distance and conflict geometry of any given traffic encounter, and so on. The expansion of the current
method to a larger set of features capturing a wider variety of behavior will be the subject of future work.

In this paper, two primary features are demonstrated. The first feature φ1(r) is simply the identify function

φ1(r) = r (19)

yielding the yaw rate trajectory vector itself. This function is chosen to represent the “DC” component of the yaw rate
trajectory signal, and its inclusion ensures that the model reproduces the distribution of yaw rate values observed in
Robs.

The histogram approximation for feature 1, obtained from Eq. (14) over Robs, is shown in Fig. 3a. Note the
logarithmic scale. A bin count of B = 19 is used for all results in this paper. The histogram indicates that values
for φ1(r) = r are concentrated in the middle bin interval of [−0.06, 0.06). This corresponds to the straight-and-level
segments observed in Fig. 1a. In these segments, the yaw rate signal has zero mean and a standard deviation of 0.025
deg/s as defined by the generating model. Since the aircraft spend most of their time flying straight and level, it is
intuitive that the yaw rate sample is within the middle bin at most time steps.

The histogram has secondary peaks on either side of zero centered at roughly ±0.5 deg/s. This corresponds to the
mean value of the yaw rate trajectory in any given turn segment, also dictated by this particular trajectory model. The
maximum of these “turn segment” peaks is smaller than the central “straight segment” peak, reflecting that the aircraft
spend less time in turns than they do flying straight.

The second feature is defined by the forward difference of the yaw rate trajectory signal:

φ2(r) = [rk+1 − rk | 1 ≤ k < T] (20)

The forward difference corresponding to Fig. 1a is shown in Fig. 4. The spikes in this figure correspond to the
changes in yaw rate experienced at the start and end of each turn segment.

Whereas feature 1 provides information about each yaw rate sample considered independently, feature 2 provides
information about the sequential correlation in the signal. That is to say, feature 2 provides information to account for
the fact that successive yaw rate samples within a given trajectory are not totally independent. Figure 3b shows the
corresponding histogram for feature 2.

C. Maxent model

First, the maxent modeling process will be demonstrated in the degenerate case with no features. This is equivalent to
setting all Lagrange multipliers to zero. The effect is that p(r ;Λ) in Eq. (13) simply becomes the uniform distribution,
assigning equal probability density to all r ∈ Ω. This is an intuitive consequence of the maximum entropy principle.
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(b) Feature 2

Figure 3: Sample mean approximation for the expected value of the feature histograms over the observation set.
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Figure 4: Forward difference of the example yaw rate trajectory in Fig. 1a.
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In the case where there are no feature constraints (i.e., no information), the uniform distribution is the one that has the
maximum entropy.

Figure 5a shows a single example trajectory produced as the result of Gibbs sampling Rsyn from this model with no
features. Aircraft produced with this model exhibit a continuously varying random walk behavior vs. the more realistic
straight and turn segment behavior observed in Fig. 1a. The distribution of yaw rate at any given time is uniform
(Fig. 5b), reflecting that this model has no additional information from any features.
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(a) Example yaw rate trajectory.
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(b) Histogram of feature 1.

Figure 5: Results of Rsyn with no features.

Next, feature 1 is added to the model. After learning Λ with feature 1, the model produces yaw rate trajectories
such as the one in Fig. 6a. As can be seen in Fig. 6b, the learning process reproduces the histogram of feature 1
(compare with Fig. 3a) with the exception of the small values (< 10−3) in the tails. Running the learning algorithm for
more iterations with a smaller value for ε would produce better convergence. While the model reproduces values in r
with the correct distribution, the sequential time dependent structure is not represented. The effect is that the yaw rate
trajectory signal in Fig. 6a has values of the correct magnitude and frequency but does not have the step-like behavior
of the straight and turn segments seen in the observed trajectories.
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(a) Example yaw rate trajectory.
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Figure 6: Results of Rsyn with feature 1.

Finally, the model is learned with both features 1 and 2. Figure 7 shows the an example trajectory produced by this
model. With the inclusion of both features, the model reproduces not only the correct distribution of yaw rate values
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but also the straight and turn segment behavior seen in Robs.
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Figure 7: Example aircraft trajectory in Rsyn with features 1 and 2.

Figure 8 shows the 2D histograms for the results including both features. Compare with Fig. 2. Qualitatively, this
model reproduces the shape the distributions in the higher probability areas (> 10−4). However, the lower probability
areas (< 10−5) are underrepresented. For instance, this model does not produce as many trajectories in the darker areas
behind the origin as seen in Fig. 2a. This can be attributed to the Gibbs sampling process. Since this is a Monte Carlo
sampling method with a finite number of iterations, it can be difficult to obtain good sample coverage in areas of low
probability. This is important if the model is to be used to obtain probabilities for rare events, such as a near mid-air
collision.
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Figure 8: Histograms of aircraft positions for trajectories in Rsyn with features 1 and 2.

D. Features as airspace constraints

The feature functions convey information in the maxent model about the statistical behavior of the aircraft trajectories
of interest. Features 1 and 2 capture some information about the variability of the yaw rate as observed in the original
set of trajectory observations. Feature functions can also be designed to convey a rich variety of additional information,
including operational constraints that may be imposed on the aircraft.
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As a final example, the model is extended with an additional feature to capture the constraint that aircraft will avoid
a given geometrically defined area. For example, we may have information that aircraft will avoid a given restricted
airspace or region of convective weather. This feature is defined as

φ3(r) =



[1, 0] if min
xk
‖xk − u‖ < d, k ∈ {1, 2, . . . ,T }

[0, 1] otherwise
(21)

where {xk } are the position vectors obtained from integrating Eqs. (1–3) for the given r, where u ∈ R2 is the position
of the center of the given airspace hazard, and d is the minimum allowable separation distance from the hazard. The
feature φ3 : RT → R2 maps the yaw rate trajectory to a one-hot vector indicating whether that trajectory passes through
the hazard or not.

The maxent learning process is repeated, now including features 1, 2, and 3. Recall that Algorithm 1 requires
the feature constraints in the form of µobs

i , which is the sample mean approximation of the histogram of each feature
over the set of observations Robs. However, the samples in the Robs used previously do not exhibit any such airspace
constraint as intended by feature 3. However, we can impose this constraint directly by setting µobs

3 as

µobs
3 = [0, 1] (22)

indicating that Ep {H[φ3(r)]} should be equal to [0, 1] if aircraft never enter this region. This is useful because it shows
we can apply constraints that will be reproduced by the maxent model, even if those constraints were not observed in
the original set of observations.

Figure 9 shows the 2D histograms with the airspace constraint feature applied in addition to features 1 and 2. The
airspace hazard in this case is marked by the white circle. The figure shows all aircraft turning left or right to avoid the
hazard.
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(a) Aircraft positions at all times.
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Figure 9: Histograms of aircraft positions for trajectories in Rsyn with features 1, 2, and airspace constraint feature 3.

V. Conclusion

The method presented here is a preliminary approach to learning a probabilistic model of aircraft horizontal
trajectory behavior. The method employs a set of feature functions to constrain a maximum entropy probability
distribution. After learning the parameters from a set of trajectory observations, the model is then sampled to produce
new, synthetic trajectories that can be used for a number of ATM applications, including separation assurance.

While the basic approach is presented here, much work remains to adapt the method to practical use. Whereas the
maxent method and related methods have received years of development in the field of computer vision, comparable
statistical modeling methods in ATM are still in their infancy. To start, the example here is restricted to the 2D, constant
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speed trajectory of an aircraft. The method should be extended to the vertical dimension, and also to account for
varying speed. The method should also be extended to account for other sources of uncertainty, including wind.

The selection of features is an art in itself. A formal process for designing and selecting which features should be
incorporated into the model is needed. Formal measures of the goodness of the learned model are also necessary to
characterize the quality of the model’s predictions.

The computational efficiency of the method should be addressed, particularly for real-time implementation. The
current process for learning and sampling requires many iterations, and improvements are necessary to support an
online application. Additionally, the ability of the method to predict rare events needs to be addressed.

Finally, future work will demonstrate the application of this method to separation assurance, in particular to the
problem of defining a dynamically optimized separation volume that is appropriate for each aircraft encounter.
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