
1 

American Institute of Aeronautics and Astronautics 

 

 

Near-Body Grid Adaption for Overset Grids 

Pieter G. Buning* 

NASA Langley Research Center, Hampton, Virginia 23681 

and 

Thomas H. Pulliam† 

NASA Ames Research Center, Moffett Field, California 94035 

A solution adaption capability for curvilinear near-body grids has been implemented in 

the OVERFLOW overset grid computational fluid dynamics code. The approach follows 

closely that used for the Cartesian off-body grids, but inserts refined grids in the 

computational space of original near-body grids. Refined curvilinear grids are generated 

using parametric cubic interpolation, with one-sided biasing based on curvature and 

stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation 

tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, 

based on largest error first, is included for controlling growth rate and maximum size of the 

adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting 

in a capability suitable for viscous, moving body simulations. Two- and three-dimensional 

examples are presented. 

I. Introduction 

rid adaption is used in computational fluid dynamics to improve the accuracy of flow simulations by reducing 

discretization error. Adaption can also be used to reduce the cost of a simulation by targeting grid refinement to 

areas of the domain where it improves the solution, as opposed to refining everywhere. Cost is measured in time to 

solution and computer resources required, and it is generally driven by the total size of the grid system. 

This paper describes the development and implementation of a solution adaption capability for near-body grids 

used in the OVERFLOW computational fluid dynamics code.1 OVERFLOW is a structured, overset grid framework 

where “near-body” grids are body-fitted curvilinear grids, and “off-body” grids are automatically generated Cartesian 

grids that fill the computational space between the near-body grids and the far-field boundary. (The use of off-body 

grids is optional, but they simplify grid generation for all but the simplest configurations.) An off-body solution 

adaption approach was presented in a previous paper,2 and this work builds on that approach. Adaption for near-body 

grids is handled in a very similar manner, with grid refinement implemented in computational space rather than 

Cartesian space. This method has been developed with the specific intent to have the grid adaption as an integral part 

of the flow solver process and to ensure that it is efficient enough to use for time-dependent moving grid problems. 

The adaption process described here is modeled after the off-body grid adaption developed by Meakin3 and 

implemented in the OVERFLOW-D code.4 This approach has been refined by Kamkar et al.5 for rotorcraft 

applications in the Helios code, again for the off-body portion of the domain. Henshaw and Schwendeman6-8 have 

developed an adaptive mesh refinement scheme for overset grids and applied it to high-speed inviscid flows. Most 

recently, Su9 has demonstrated a grid adaption scheme for curvilinear multi-block structured grids which includes 

many of the features presented here, including parametric cubic interpolation to refine curvilinear grids and a sensor 

function based on second undivided differences of flow quantities. 

New capabilities in this work include control of global size and growth of the near- and off-body grid system, an 

optional weighting of the sensor function by distance to the wall, use of blended central and one-sided differences 

with parametric cubic interpolation for grid refinement, and parallel performance of the grid adaption process suitable 

for viscous, moving body flow simulations using an overset structured grid approach. 

                                                           
* Aerospace Engineer, Computational AeroSciences Branch, MS 128, AIAA Associate Fellow. 
† Aerospace Engineer, Fundamental Modeling and Simulation Branch, MS 258-2, AIAA Associate Fellow. 

G 



2 

American Institute of Aeronautics and Astronautics 

 

 

II. Approach 

In this work, some basic ground rules for the adaption process are used, which match the off-body adaption scheme 

presented in Ref. 2. These include: allowing only isotropic grid refinement (using factors of two in each computational 

coordinate direction); arranging neighboring refinement regions so they differ by only one level of refinement; and 

providing communication between refinement regions by blanking out underlying coarser-level regions, leaving just 

enough overlap for interpolation of boundary flow conditions. 

Several steps are involved in the adaption process. First, an error estimate or sensor function is computed as a field 

quantity. This function must be converted to a marker function that indicates what parts of the grid should be refined 

or coarsened. This marker function is further adjusted to satisfy a limit on global grid size. Next, the new grid system 

is created, with refined near-body grids preserving the smoothness and geometry features of the original grids. Finally, 

the flow solution is interpolated from the old grid system to the new system. 

A.  Sensor Function and Grid Marking 

A sensor function is used in the grid adaption process to identify grid regions for coarsening or refinement. It is 

generally expected to represent a measure of the truncation error in the solution. One function that has proved useful 

for off-body adaption is the second undivided difference of the solution variables.2 This measure was used for adaption 

by Meakin3 in the original development of off-body Cartesian grids in OVERFLOW-D.4 It has also been used by 

Warren et al.10 and by Henshaw and Schwendeman6-8 (in a form blended with the first undivided difference). In Ref. 

9, Su uses second undivided differences of density, pressure, and temperature, normalized by a local average of the 

same flow quantity, as a sensor function. He states that this will identify both shock waves and vortices. 

Here we use the primary flow variables (density, momentum, and stagnation energy per unit volume) in calculating 

the second undivided difference sensor function. We refer to these flow variables collectively as Q, and individual 

elements as q. The term “undivided” refers to these differences not being divided by the appropriate grid cell size 

term, i.e., Δx for the first-difference and Δx2 for the second-difference. The second undivided difference is represented 

at each point as Si = (qi-1 – 2qi + qi+1)/2. It is equal to the difference between qi and the linear interpolation (or average) 

of its neighbors qi+1 and qi-1. In the context of computing S as a general function for adaption, we (a) normalize by a 

reference quantity qref, (b) square it to create a non-negative value, (c) take the maximum over all elements of Q, and 

(d) take the maximum over all coordinate directions: 

 

𝑆 = max
𝑖=𝑗,𝑘,𝑙

{ max
𝑄 components

[(
𝑞𝑖−1 − 2𝑞𝑖 + 𝑞𝑖+1

2𝑞ref

)
2

]} 

 

This function is non-dimensional, independent of grid units, and becomes smaller as the grid is refined (where Q 

is smooth), all desirable properties for a sensor function for solution adaption. Further, it is simple to compute and the 

computation can be fully parallelized. 

A smoothing step has been found to help the adaption process by removing local peaks or ridges in the sensor 

function, which may be caused by transients at inter-grid boundaries, for example. This smoothing step is implemented 

as consecutive sweeps in each of the coordinate directions, setting Si
* = min[Si, max(Si-1, Si+1)]. 

In some cases, flow features may persist far away from the geometry that created them. It is not often desirable to 

allow grid adaption to resolve these features to the far field, so some way to limit the extent of the adaption is needed. 

Two methods have been implemented. One is a simple geometric specification of a region, along with a maximum 

refinement level allowed. For off-body grids, the region is specified as an (x,y,z) box, with adaption control applied 

either inside or outside of the box. For near-body grids, the region is specified as a box in (j,k,l) computational space. 

This simple control is implemented at the stage when the refined grids are being generated. A second method for 

limiting the extent of the grid adaption is implemented as a distance weighting on the sensor function. This has the 

advantage of requiring much simpler user input which is not grid-specific. This weighting takes advantage of the wall 

distance function (usually calculated for the turbulence model). Two input parameters are specified: a characteristic 

length dchar, representing a one-grid refinement-level decay in the effective sensor function, and a distance offset from 

the wall doffset to start the distance-based decay. This weighting factor is calculated as w = (d*/dchar)/2p, where the 

modified distance d* = max(d-doffset, 0), and 2p is the expected reduction in the sensor function with one level of grid 

refinement. 

The primary purpose of the sensor function is to mark grid points for coarsening or refinement. If the function 

value at a grid point exceeds a specified threshold for refinement, that point is marked for refinement; if the value is 

below a coarsening threshold, the point is marked for coarsening. However it would also be useful to convert the 

sensor function into the expected number of refinement levels needed to bring the sensor function below the refinement 
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threshold, or the number of levels the grid could be coarsened to bring the sensor function up to the coarsen threshold. 

In order to do this, we need an estimate of the expected reduction in the sensor function with each level of refinement. 

Here we follow Nemec, Aftosmis, and Wintzer,11 estimating the error reduction at 2p, where p is the order of accuracy 

of the numerical scheme. The choice of p is not critical to the adaption process but allows the presentation of a 

diagnostic prediction of the effect of additional adaption steps. We hope to use a 5th-order scheme for convective flux 

terms, so set p=5 for now. (We do realize there is an inconsistency in using the second undivided difference squared 

as the sensor function, while expecting a drop of 2p with refinement, rather than (2p)2. This inconsistency may be offset 

by the fact that the numerical solution procedure is formally 2nd-order accurate, not 5th-order.) 

In order to examine the sensor function in terms of grid refinement or coarsening, we define threshold values Srefine 

and Scoarsen. The sensor function is then converted to an expected refinement level R as follows: 

 

𝑅 =  

{
 
 

 
 log2𝑝 (

𝑆

𝑆𝑟𝑒𝑓𝑖𝑛𝑒
) , 𝑆 > 𝑆𝑟𝑒𝑓𝑖𝑛𝑒   

log2𝑝 (
𝑆

𝑆𝑐𝑜𝑎𝑟𝑠𝑒𝑛
) , 𝑆 < 𝑆𝑐𝑜𝑎𝑟𝑠𝑒𝑛

0, 𝑆𝑐𝑜𝑎𝑟𝑠𝑒𝑛 ≤ 𝑆 ≤ 𝑆𝑟𝑒𝑓𝑖𝑛𝑒

 

 

The percentage of grid points with a value of R in each integer step is presented in a chart at each adaption step, 

showing the progression of points to lower values of the sensor function with successive adaption cycles and further 

convergence of the flow solution. We note that the ratio Srefine/Scoarsen should be greater than 2p, to avoid grid points 

that are refined on one adapt cycle being flagged for coarsening on the next cycle. A parameter SIGERR is adopted 

from the OVERFLOW-D code to conveniently specify both Srefine and Scoarsen as (1/8)SIGERR and (1/8)SIGERR+2, resp. 

This provides a ratio Srefine/Scoarsen = 26, or slightly more than one expected level of refinement. 

The grid refinement process uses the value of R at each point by agglomeration, taking the maximum value within 

a cube or “box” of points (e.g., 8x8x8 points). If any point is marked for refinement (Rmax>1), the box is flagged for 

refinement. Alternatively, if all points are marked for coarsening (Rmax<-1), the box is flagged for coarsening. If the 

box is not flagged for refinement or coarsening, it is left at the current refinement level. In the current implementation, 

grid regions can only coarsen or refine by one grid level at a time. These coarsening and refinement boxes are then 

used in the near-body refinement process to create a new adapted grid system. 

B.  Controlling Grid Size and Growth 

For this work, a goal-oriented procedure has been implemented to control the growth rate and maximum size of 

the combined near- and off-body grid system as it is adapted.  This process is based on refining largest error cells first, 

following the concepts of Nemec, Aftosmis, and Wintzer,11 and Nemec and Aftosmis.12 While specific coarsen and 

refinement threshold values (Scoarsen, Srefine) for the sensor function are chosen by the user, the actual values used to 

trigger coarsening and refinement at each adaption step are adjusted automatically so the resulting grid size does not 

exceed a maximum size. This size is determined by the minimum of a percentage growth of the current size, and an 

absolute size. Limiting the growth rate to 20 or 30% at each adapt cycle results in a significantly more robust adaption 

process than refining all grid regions where the sensor function indicates refinement is needed. Further, this focuses 

refinement first on those regions showing the largest value of the sensor function. The ability to specify an absolute 

maximum grid size is useful so as to not exceed the available computing resources or job run time. 

The specific mechanics of the adaption process are accomplished by calculating the new grid size based on input 

threshold values, then adjusting those values to meet the grid size limitations. A binary search method is chosen, since 

the relation between threshold values and grid size is not necessarily smooth. This matches the choice by Péron and 

Benoit.13 Since the sensor function only has to be computed once and only the maximum value in each box of points 

needs to be examined, iterating to find acceptable thresholds takes little time compared to other adaption tasks such 

as interpolation of the flow solution onto the new grid system. 

C.  Grid Generation and Connectivity 

Refined regions of near-body grids are generated using parametric cubic interpolation. In one dimension, the 

interpolation function f is expressed in parametric space 𝜉 as 

 

𝑓(𝜉) = 𝑓(0)[2𝜉3 − 3𝜉2 + 1] − 𝑓(1)[2𝜉3 − 3𝜉2] + 𝑓𝜉(0)[𝜉
3 − 2𝜉2 + 𝜉] + 𝑓𝜉(1)[𝜉

3 − 𝜉2] 
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Here 𝜉 ∈ [0,1] represents the interpolation interval, one cell for the purpose of grid generation. To evaluate the 

function, values of 𝑓 and its derivative in parametric space 𝑓𝜉  are needed at the corners of the cell 𝜉 = 0 and 𝜉 = 1. 

Parametric cubic interpolation in three dimensions is similar, but first derivatives and all combinations of cross-

derivatives in the (𝜉, 𝜂, 𝜁) coordinate directions are needed at the cell corners. 

This approach preserves smooth geometry, avoiding faceting of the surface that would occur with linear 

interpolation. Figure 1 compares a transonic airfoil flow-field using linear and parametric cubic interpolation. Pressure 

contours are smooth when using cubic interpolation but display oscillations resulting from the faceted surface 

representation when using linear interpolation. Parametric cubic interpolation also preserves grid stretching, which is 

critical for highly stretched viscous grids. A comparison of grid stretching using linear and parametric cubic 

interpolation is shown in Fig. 2. In the stretched direction, refined regions using linear interpolation show sudden 

jumps in spacing corresponding to grid cells of the original grid. This is because linear interpolation yields constant 

spacing for refinement within each original grid cell. Since the original grid is stretched, the refined grid changes 

spacing at each original cell boundary. With cubic interpolation, the grid spacing changes smoothly in the refined 

regions. 

A disadvantage of using parametric cubic interpolation is that sharp corners in the original grid become rounded 

as the grid is refined. To avoid this problem, derivative information at cell corners are determined by blending central 

           
(a) linear interpolation            (b) parametric cubic interpolation 

Figure 1. Pressure contours about the nose of an airfoil when using linear or parametric cubic 

interpolation for grid refinement. 

           
(a) linear interpolation               (b) parametric cubic interpolation 

Figure 2. Stretched grid refinement regions about the nose of an airfoil when using linear or parametric 

cubic interpolation. 
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and one-sided differences based on local grid line curvature and stretching ratios. If a derivative is computed using 

central differencing, the value will be the same for neighboring cells, and the parametric space will have C1 continuity.  

If one-sided differences are used, the parametric space will be continuous in value, but not in slope. While this scheme 

does not preserve all geometry features, it can produce smooth refined grids that preserve significant corners. This is 

illustrated by a close-up of the trailing edge of a blunt airfoil in Fig. 3. Linear interpolation preserves the sharp corner, 

while the refined grid produced with cubic interpolation rounds the geometry very close to the corner. Using the 

blended central and one-sided differencing allows the cubic interpolation scheme to maintain smoothness in most of 

the grid, while preserving the sharp corner, and transitioning smoothly between the two. For the purpose of grid 

refinement, the problem of detecting features such as corners exists for the entire volume grid, not just the surface. If 

the surface grid line were to preserve the sharp corner but the next line off the surface was smooth, the resulting grid 

would have a sudden jump in spacing and would not be suitable for use. 

In this work, two blending functions are used: one to handle turning of grid lines (Bθ) and one for changes in grid 

spacing (BSR). Both blending functions range from 1 (slopes determined by central differencing) to 0 (slopes calculated 

with one-sided differences). The angle blending function is calculated as 

 

𝐵𝜃 = {
2𝑐𝑜𝑠2𝜃 − 1, |𝜃| ≤ 45 𝑑𝑒𝑔.

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

For grid lines in a coordinate direction, the cosine of the turning angle θ at point i is easily calculated as the dot 

product of the normalized direction vector between points i and i-1, and the vector between i+1 and i. With this 

formulation, anywhere a grid line turns by more than 45 deg. the slope discontinuity will be fully preserved. As the 

turning angle approaches zero, the slope will be determined by central differencing, resulting in the same slope in the 

refined grid on both sides of the original grid point. 

A lack of smoothness in grid spacing must also be addressed. For this we define a blending function using the grid 

stretching ratio. The stretching ratio SR is calculated as the distance between points i+1 and i, divided by the distance 

between i and i-1. If the stretching ratio is less than one, we take the inverse, so that the function is independent of 

direction along the grid line and is always greater than or equal to one. We use a simple blending function 

 

𝐵𝑆𝑅 = {
0, 𝑆𝑅 ≥ 5
1, 𝑆𝑅 ≤ 3

𝑙𝑖𝑛𝑒𝑎𝑟, 𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛
 

 

Both blending functions are computed in each coordinate direction, at each original grid point. The product 

𝐵 = 𝐵𝜃𝐵𝑆𝑅  is used to blend central and one-sided differences to represent a derivative in that coordinate direction, 

with 2nd-order differences used where possible: 

 

𝑓𝜉(0) = 𝐵𝑖
(𝑓𝑖+1 − 𝑓𝑖−1)

2
+ (1 − 𝐵𝑖)

(−3𝑓𝑖 + 4𝑓𝑖+1 − 𝑓𝑖+2)

2
 

 

This formulation can be further improved to reduce the one-sided difference from 2nd-order to 1st-order based on 

the blending function at i+1. 

 

       
      (a) original grid     (b) linear interpolation (c) parametric cubic   (d) parametric cubic 

                interpolation      interpolation with 

                         blended differences 

Figure 3. Original and refined grids around a sharp corner. 
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𝑓𝜉(0) = (𝑓𝑖+1 − 𝑓𝑖) − 𝐵𝑖
(𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1)

2
− (1 − 𝐵𝑖)𝐵𝑖+1

(𝑓𝑖+2 − 2𝑓𝑖+1 + 𝑓𝑖)

2
 

 

These blending functions are not perfect. Two issues have been observed, one where the blending function changes 

too rapidly in highly skewed regions of the original grid. This may result in negative volumes in the refined grid. The 

other issue is that even with slight curvature there is a small amount of one-sided differencing used for local slopes. 

This discourages the use of very coarse original grids, as curved geometry will not be fully preserved with refinement. 

Overset grid connectivity is established for refined grid regions by first allowing holes to be cut by neighboring 

geometry in the same way as they are cut in the corresponding original grid. For example, if a wing grid is cut by the 

fuselage, then all refined grid regions of that wing grid may also be cut by the fuselage. A refinement region (or the 

original near-body grid) may also have holes created due to finer refinement regions. Boundary conditions for a refined 

grid region may come from (1) physical boundary conditions (such as a solid wall) inherited from the original grid, 

(2) interpolation of flow variables from original or refined regions of the same grid, or (3) interpolated data from a 

different grid. All but the last are set up automatically as a result of the grid refinement process, leading to an efficient 

determination of grid connectivity. 

D.  Grid and Solution Interpolation 

In contrast to the creation of refinement regions for off-body grids (which are simply equi-spaced Cartesian grids), 

the grids for near-body refinement regions are generated through interpolation of the associated original grid. We 

create regions of any level of refinement (2x, 4x, etc.) directly from the corresponding subset of the original grid, 

rather than from the next-coarser refinement level. This has the advantage of requiring the least amount of information 

for the interpolation process. This is an advantage for parallel processing, when processes creating refinement regions 

for a given near-body grid must receive appropriate subsets of the original grid for interpolation. Alternatively, if the 

interpolation was done from the next-coarser refinement level rather than the original level, transfer of a finer grid 

than the original grid would be required. In addition, the next-coarser level might not be available until part-way 

through the new grid generation process, impeding parallelism due to dependency. The current approach provides 

some level of parallelism by using non-blocking sends and blocking receives to exchange pieces of the grid needed to 

generate refinement regions. Grids for the new regions are then generated independently by each process as needed. 

Once a new grid system has been generated, the flow solution has to be interpolated from the old grids to the new 

ones. This process is done (for each new refinement region) by interpolating flow quantities from any overlapping old 

refinement regions associated with the same original near-body grid, or the original grid itself. Old regions are checked 

coarse-to-fine, so that the final interpolated solution represents the finest available solution in each part of the grid. 

Interpolation weightings are easy to determine, since both old and new regions are referenced to the computational 

space of the original near-body grid. The current process uses tri-linear interpolation (in computational space). This 

procedure is parallelized by structuring the interpolation as an outer loop through old refinement regions and an inner 

loop through new refinement regions. The MPI process that owns the old grid extracts appropriate subsets and sends 

them to processes that own overlapping new grids, using non-blocking sends. The receiving processes use blocking 

receives, and interpolate the grid subset immediately. If the owner of the old grid also owns an overlapping new grid, 

interpolation is done in-place. In this way, much of the processing of each old grid is performed in parallel, while only 

sending the required subsets of the grid to those processes that need them. This interpolation process is done for each 

near-body grid used in the simulation. 

III. Examples 

Five examples are presented here, representing steady and unsteady flows. These cases illustrate the capability and 

characteristics of the near-body solution adaption scheme, including improved accuracy at reduced cost (compared to 

global refinement), and parallel performance suitable for moving body simulations. These examples demonstrate the 

ability to refine flow features to allow investigation of physics, track and resolve features which impinge on other 

bodies, and reduce computational cost by resolving flow without global refinement of the grid. 
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A. Transonic Airfoil 

The first example is of transonic flow about 

a NACA 0012 airfoil. At Mach 0.55, 8.34 deg. 

angle-of-attack, and a Reynolds number of 9 

million per chord, the flow accelerates around 

the leading edge and forms a shock wave at 

about 10% chord. This flow condition 

corresponds to Case A2 of the 1987 Viscous 

Transonic Airfoil Workshop, results of which 

were reported in Ref. 14. We use an O-grid with 

253 points around the airfoil and 73 points in 

the viscous direction normal to the surface as 

the original near-body grid. In this case we use 

no off-body grids, and the near-body grid 

extends to the far field. Using an HLLE++ 

upwind scheme with 3rd-order MUSCL,15 the 

flow solution on the original grid captures the 

shock in two grid cells. When four levels of grid 

adaption are used, the structure of the 

shock/boundary layer interaction is resolved 

more clearly, showing a lambda shock and a 

larger flow separation than shown in the original grid (Fig. 4). Weak shock reflections behind the lambda shock are 

evidenced by oscillations in the Mach contours. Finer contour levels would reveal alternating slightly supersonic and 

subsonic regions. (In contrast, oscillations behind the main shock are an artifact of the upwind scheme, where the 

shock wave stair-steps through the grid. The adaption scheme has refined the grid to preserve these features as they 

are convected downstream.) The improved flow feature resolution is reflected in the surface pressure coefficient as 

shown in Fig. 5, a result of the lambda shock and more pronounced separation bubble. 

B. Shock Wave/Turbulent Boundary Layer Interaction 

The second example is a two-dimensional Mach 5 shock wave/turbulent boundary layer interaction (SWTBLI) 

test case,16 with a 14 deg. ramp on the upper surface creating a shock that interacts with the boundary layer on the 

lower surface. This flow field is designed to be a test for turbulence models. The use of grid adaption allows more 

confidence that the computed solution obtained is not affected by poor grid resolution. A coarser version of the grid 

used by Lillard et al.17 is used here as the original near-body grid. (Again, no off-body grids are used.) Second-order 

central differencing with matrix dissipation18 is used for the inviscid fluxes, along with the Menter SST turbulence 

 
Figure 5. Airfoil pressure coefficient with and without grid 

adaption, compared to experimental data (from Ref. 14). 

     
          (a) original grid             (b) adapted grid 

Figure 4. Comparison of Mach contours from the original grid and the adapted grid using four levels of 

adaption. 
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model.19 Images showing the overall grid and Mach contours, and close-ups of the shock/boundary layer interaction, 

are shown in Fig. 6. The solution with 4 levels of grid adaption clearly shows the details of the interaction, including 

the separation bubble, shock intersections, expansion fan, and recompression shock on the back side of the separation. 

C.  Pitching Airfoil 

This example is a two-dimensional simulation of a pitching NACA 0015 airfoil, with experimental data from 

Piziali.20 This case has a free-stream Mach number of 0.29, Reynolds number of 1.95 million per chord, and an angle-

of-attack range of 6.8 to 15.2 deg. The reduced frequency of the oscillation is 0.2. The purpose of this test case is to 

demonstrate the ability of the grid adaption to follow flow features that are moving, using a coupled near-body/off-

body grid system. Here the airfoil is resolved by an O-grid that extends 0.1 chords away from the surface. The near-

body grid adaption process has not been programmed to handle periodic grid boundaries, so the O-grid is split into 

two overlapping grids. The initial off-body grid resolution near the airfoil is 0.01 chords. We use a 5th-order WENO15 

 
(a) Overall comparison of supersonic inlet grid and Mach contours. 

 

 
(b) Close-up of shock/boundary layer interaction. 

Figure 6. Comparison of supersonic inlet grid and flow field with and without grid adaption. 
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scheme with HLLE++ upwind differencing for the inviscid fluxes. The Spalart-Allmaras turbulence model21 is used, 

with the SARC rotational and curvature correction.22 Further, delayed detached eddy simulation23 (DDES) is used to 

reduce eddy viscosity in separated regions. While the use of DDES in two-dimensional simulations is not physically 

appropriate (and we are not endorsing it here), it enhances the richness of flow features in this calculation, providing 

a more interesting test for grid adaption. 

The flow simulation is first converged with the airfoil fixed at the lowest angle-of-attack, and grid adaption is 

started with two levels of refinement on both the near- and off-body grids. Airfoil pitching is started, with 5760 time-

steps per cycle and 100 sub-iterations per time-step, using dual time-stepping for 2nd-order accuracy in time. The grid 

is adapted every 10 time-steps. The adapted grid system and Mach contours are shown in Fig. 7, at the bottom and top 

of the pitching cycle. We see that the near-body refinement regions have followed the thickening of the boundary 

layer on the upper surface, and refined the trailing edge wake region. The off-body grids have continued this 

refinement in the wake. 

The two-dimensional grid system averages about 2 million grid points. This simulation was performed using 16 

MPI processes, with grids being redistributed for load-balancing at every adaption step. The adaption process averaged 

0.24% of the total simulation time per pitch cycle. We consider this an acceptable cost for the advantage of having 

solution adaption as part of the simulation process. For comparison, lift, drag, and pitching moment coefficients vs. 

   
(a) 6.8 deg. angle-of-attack (bottom of pitch cycle). 

   
(b) 15.2 deg. angle-of-attack (top of pitch cycle). 

Figure 7. Mach contours for pitching airfoil, showing grid adaption of boundary layer and wake (close-up of 

trailing edge region on left).  

 
Figure 8. Lift, drag and pitching moment coefficients vs. angle-of-attack for original and adapted grids, 

compared to experimental data from Ref. 20. 
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angle-of-attack are plotted in Fig. 8 for the original and adapted grid systems, along with experimental data from 

Piziali.17 Grid refinement in the separated flow segment of the pitch cycle accentuates the trend toward negative pitch 

damping at the top of the pitch cycle. The effect of reduced eddy viscosity due to DDES is indicated by the large 

oscillations in pitching moment, a result of shed vortices being stronger in two dimensions than in a real three-

dimensional flow. 

D.  Blade/Vortex Interaction 

This case simulates the wake and tip vortex of one wing impinging on a trailing wing. It is meant to mimic 

blade/vortex interaction in a helicopter rotor flow field. A wind tunnel test of this configuration was performed by 

Wittmer et al.24 Both leading and trailing wings use the NACA 0012 airfoil with the same chord, and have a flat 

wingtip. Both wings are mounted on the tunnel wall at 5 deg. angle-of-attack, with the trailing wing 14 chords directly 

behind the leading wing. The leading and trailing wings have spans of 4.33 and 4.94 chords, resp. The intent of the 

experiment was to measure the effect of the leading wing tip vortex on the pressure distribution of the trailing wing. 

Here we test the combination of near-body and off-body grid adaption on a steady three-dimensional flow. The 

near-body grids extend 0.1 chords from each wing. Each wing is gridded with a (split) O-grid covering the main part 

of the span, and a tip cap grid coving the flat tip and overlapping the main wing grids. The tunnel wall is modeled as 

an inviscid wall. A 5th-order WENO scheme with Roe upwind differencing is used for inviscid fluxes, to help preserve 

the wakes and tip vortices. Two levels of refinement are used, with adaption performed every 20 or 50 steps, for a 

total of 21 adaption cycles. Figure 9 shows a detail of surface pressure on the tip of the leading wing, with grid 

refinement on a slice of the tip grid. The grid adaption in the wing grids helps generate a more concentrated tip vortex 

from the leading wing by reducing numerical dissipation due to the grid. Figure 10 shows a slice of the flow field 

ahead of the trailing wing showing the incoming wake, and a slice just downstream of the trailing wing, showing 

wakes from both wings. The leading wing wake has been sliced by the trailing wing, with the majority of the wake 

passing below the wing and the tip vortex grazing the top of the wing. Near-body and off-body grid adaption has 

allowed this grid system to propagate the vortex to the trailing wing and beyond. 

To evaluate the computational requirements of the adaption process, we look at the percent of total run time spent 

on the grid adaption. For this example, 6 grid adaptions were performed during a run of 300 steps. The adaption 

process accounted for 1% of the total run time. The grid system averaged 115 million points, which was split among 

20 MPI processes. 

 

      

Figure 9. Surface pressure and slice of adapted 

tip grid on leading wing. 

 

Figure 10. Trailing wing surface pressure and 

entropy contours on slices of adapted off-body 

grids. Particle traces indicate tip vortex location. 
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E.  Rocket Plume in Cross-Flow 

A final test case evaluates computational resources for grid adaption in an unsteady flow. Here a generic rocket 

engine is throttled up as it pitches from 0 to 30 deg. cross-flow angle in a Mach 2 free-stream flow. The Reynolds 

number is 4.7 million based on the nozzle diameter. One level of grid refinement is used, with adaption every 10 time-

steps and 20 sub-iterations per time-step. This case serves as a test-bed for a simulation of Space Launch System stage 

separation, which uses booster separation motors firing in cross-flow to push the solid rocket motors away from the 

core vehicle. 

Figure 11 shows contours of the log of temperature on the symmetry plane at two different pitch angles. The off-

body grid refinement has followed the plume structure, showing that the adaption frequency is sufficient to keep up 

with the changing flow field. A detail of the flow near the nozzle illustrates the effect of near-body adaption in 

resolving the shear layer as it leaves the nozzle lip, and the plume structure near the nozzle. This simulation averages 

60 million grid points in 3000 grids, and uses 200 MPI processes.  Grid adaption takes 2.8% of the total run time. This 

performance level is quite adequate for unsteady flow simulations on grids of the order of 100 million grid points. 

IV.  Problems and Future Work 

The example cases shown in the previous section demonstrate significant success in implementation of a grid 

adaption scheme for near-body curvilinear grids in an overset grid approach. However, certain aspects of the process 

have proved troublesome and need additional work. The blended central/one-sided differencing for parametric cubic 

refinement causes negative cell volumes for some grids, specifically in highly skewed original grids. Further 

refinement of the blending formulas may alleviate this problem. 

The current adaption process only allows isotropic refinement in computational space. While this is sufficient to 

provide grid refinement and is less costly than global refinement, grid sizes can still be quite large. Anisotropic 

refinement could allow span-wise refinement without increasing viscous clustering, or shear layer refinement without 

adding points in the chord-wise direction. However, the increased coding complexity is daunting. A related problem 

is the reduced viscous wall spacing resulting from adaption at the wall. Three levels of adaption can result in an initial 

spacing an order of magnitude smaller than required, and may result in slow convergence of the flow solver and 

turbulence model. In Ref. 9, Su notes that slow convergence or divergence of the turbulence model can be caused by 

subtleties of wall distance calculation in refined regions. 

Finally, feature-based adaption, or adapting the grid to specific flow features or characteristic properties of the 

flow variables, is generally accepted to be less efficient than output-based adaption such as the adjoint method for 

error estimation, which can guide grid adaptation specifically to improve a functional output such as lift or drag (cf. 

Ref. 25). The incorporation of some form of output-based error estimate as the sensor function to drive the present 

adaption scheme could improve its usefulness for engineering applications. 

V. Summary 

We have presented a scheme for solution adaption of the curvilinear near-body grids in a structured, overset grid 

flow solver. The grid adaption and solution interpolation are an integral part of the flow solver, providing a high level 

of efficiency. Parametric cubic interpolation is used to create refined regions of the original near-body grids in 

   
 

Figure 11. Pitching rocket plume in Mach 2 flow, at two different angles. Adapted grid is colored by logarithm 

of temperature. At right is a close-up of the nozzle lip region. 
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computational space, preserving both smooth geometry and smooth grid stretching. A blending of central and one-

sided differencing is used to determine spatial derivatives at cell corners, allowing preservation of sharp corners and 

other grid discontinuities. 

The scheme is implemented in a parallel fashion using MPI, in particular the interpolation of the grid and flow 

solution onto the new grid system. Load-balancing of the flow solution process is maintained over adaption cycles. 

Further, a procedure for controlling growth rate and maximum size of the adapted grid system has been implemented, 

which benefits the robustness of the adaption process and control of computational resources. Efficient adaptation for 

both steady and unsteady flows has been demonstrated. 

This scheme, coupled with off-body adaption already developed, provides an engineering capability to improve 

the accuracy of flow simulations while reducing the computational cost compared to global refinement of the grid. By 

providing an automated adaption process, the scheme also reduces the burden on the user to refine grids by hand. 
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