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Autonomous operation of UAS holds promise for greater productivity of atmospheric

science missions. However, several challenges need to be overcome before such missions can

be made autonomous. This paper presents a framework for safe autonomous operations

of multiple vehicles, particularly suited for atmospheric science missions. The framework

revolves around the use of piecewise Bézier curves for trajectory representation, which in

conjunction with path-following and time-coordination algorithms, allows for safe coordi-

nated operations of multiple vehicles.

I. Introduction

With the increased interest in modeling and predicting the Earth’s climate, and the growing need for
more accurate weather predictions,1–3 a better understanding of the underlying processes that drive our
climate through field studies has gained critical importance.4 In this regard and under the Science Mission
Directorate (SMD), collection of atmospheric data, necessary for such understanding, is being conducted at
NASA through missions that often rely on i) helium balloons; ii) manned aircraft such as Cessna 402B or
NASA’s P-3B aircraft; or iii) remotely piloted vehicles such as the Global Hawk. With the recent availability
of relatively cheap multirotors, great interest has been shown in their use for science missions as well.

Although there is a variety of platforms available for atmospheric science missions, no current solution
allows scientists to conduct a mission without an experienced crew being available at hand. This not only
limits the number and types of missions that can be conducted, but also increases their cost. Thus, for a
greater science and application productivity, autonomous operation of these platforms is important.5

Enabling autonomous operation for science missions, however, comes with several challenges. First, we
point out that the requirements for atmospheric science missions are often different from the more classical
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autonomy task of reaching a destination point given an initial point. From the perspective of mission
planning, two primary challenges that differentiate atmospheric science missions are:

• Flying in a geometric pattern: for atmospheric data collection, scientists often require vehicles to
fly in a predefined geometric pattern. The Atmospheric Tomography Missiona under NASA is an
example of such a mission. By flying a DC-8 aircraft in a pattern, this mission provides concentration
measurements of methane, tropospheric ozone, and black carbon aerosols at different altitudes.

• Coordinated flight of heterogeneous vehicles: in order to collect correlative data, or to calibrate sensors,
science missions can require multiple heterogeneous vehicles to fly in coordination. An example of such
operation would be NASA GRIPb mission, in which hurricane formation and intensification data was
collected using three different kinds of aircraft (namely DC-8, B-57, and Global Hawk).

Taking these trajectory-generation requirements into consideration, this paper presents a piecewise Bézier
curve based framework for the design and operation of atmospheric science missions that can provide scien-
tists with the following capabilities

• Generate trajectories for the following tasks:

– Given a set of initial positions, velocities (and accelerations), reach a final destination with a
specific velocity (and acceleration) while satisfying a predefined inter-vehicle schedule. In this
case, the final destination can either be a landing spot to reach at the end of the mission or,
alternatively, the location of interest for correlative data acquisition.

– Fly geometric patterns, possibly in formation. Some patterns of interest include i) straight ver-
tical or helical curves where concentration of a gas can be measured at different heights using
multirotors or fixed wing aircraft, respectively; ii) Boustrophedon-path like patterns to study the
concentration of certain atmospheric components over a given region.

• Perform collision avoidance maneuvers using onboard algorithms.

• Autonomously follow paths while ensuring time coordination between the vehicles.

This paper is organized as follows: we begin with an introduction to Bézier curves in Section II, followed
by an overview of the framework in Section III. The trajectory-generation algorithm, that serves as the
backbone of the framework is provided in Section IV. Section V provides an overview of the collision-
avoidance algorithm used in the proposed framework. The path-following and time-coordination algorithms
are provided in Sections VI and VII, respectively. Finally, we provide a simulation that brings all these
algorithms together in Section VIII and conclude the paper in Section IX.

II. Bézier Curves

In this section, we introduce Bézier curves and mention a few relevant properties and algorithms designed
for them. An n-th degree Bézier curve is a polynomial curve defined completely by its control points r̄k as

r(ζ) =
n
∑

k=0

r̄kb
n
k (ζ), ζ ∈ [0, 1],

where bnk (ζ) are the Bernstein polynomials given as

bnk (ζ) =

(

n

k

)

(1 − ζ)n−kζk, ζ ∈ [0, 1].

An example Bézier curve is shown in Figure 1.

ahttp://science.nasa.gov/missions/atom/
bhttp://airbornescience.nsstc.nasa.gov/grip/
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Figure 1: Left panel shows a Bézier curve in blue, defined by its control points r̄k , k ∈ {0, 1, . . . , 5} shown
in green. Right panel shows the application of the de Casteljau algorithm on the curve to obtain the curves
shown in red and green. For illustrative purposes, the red and green curves have been shifted. In fact, they
lie on top of the blue curve and ra(1) = rb(0).

A. Properties of Bézier Curves

Bézier curves were initially popularized by Pierre Bézier for being intuitive to design and modify. The
properties that make these curves intuitive to use, also make them suitable for piecewise curve generation:

• A Bézier curve r(ζ), for which all the control points are equal,

r̄i = r̄j i, j ∈ {0, · · · , n},

is essentially a point, given as r(ζ) = r̄i for any ζ ∈ [0, 1].

• The initial and final points of a Bézier curve (r(0) and r(1)) are equal to its first and last control
points, respectively.

• The derivative of a Bézier curve of degree n:

q(ζ) =
dr(ζ)

dζ
,

is a Bézier curve of degree n− 1 with control points q̄k:

q̄k = n(rk+1 − rk), k ∈ {0, · · · , n− 1} .

• From the above two properties, it follows that the initial and final derivative of a Bézier curve are
specified as:

q(0) = n(r1 − r0), and q(1) = n(rn − rn−1),

respectively. A similar expression can be specified for initial and final second derivative.

• Addition of two Bézier curves with the same degree results in another Bézier curve of identical degree.

B. The de Casteljau Algorithm

The de Casteljau algorithm6 can be used to subdivide a Bézier curve into two independent curves. Specif-
ically, given an nth degree Bézier curve and a scalar ζdiv ∈ (0, 1), the de Casteljau algorithm provides two
independent Bézier curves r1(ζ) and r2(ζ) of the same degree such that

r(ζ) =











r1

(

ζ
ζdiv

)

, ζ ∈ [0, ζdiv],

r2

(

ζ−ζdiv
1−ζdiv

)

, ζ ∈ [ζdiv, 1].

An illustration of this algorithm is provided in Figure 1.
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C. Minimum Distance Calculation

Given two Bézier curves ra(ζ) and rb(ζ) with ζ ∈ [0, 1], the minimum distance algorithm,7 uses the de
Casteljau algorithm6 and the Gilbert-Johnson-Keerthi algorithm8 to efficiently calculate

min
ζa,ζb∈[0,1]

||ra(ζa)− rb(ζb)||, and argmin
ζa,ζb∈[0,1]

||ra(ζa)− rb(ζb)||,

without requiring any discretization.

III. The Framework

The control architecture adopted in this paper is primed for atmospheric science missions and enables
coordinated flight of heterogeneous vehicles, tasked to fly to a target point and perform predefined flight
patterns. The control structure is shown in Figure 2.
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Figure 2: Overall architecture used by the framework that involves a ground station and multiple vehicles.

In Figure 2, the blue block represents a ground station that performs centralized trajectory generation
(and possibly trajectory replanning) for all vehicles. Using the vehicle network, the ground station commu-
nicates the trajectory information to all vehicles.

The vehicles themselves are shown as the yellow block. Apart from receiving trajectory information from
the ground station, these vehicles can communicate among one another for coordination during flight. The
algorithms onboard the vehicles include the i) collision-avoidance algorithm that allows the vehicles to replan
their own trajectories in case of an unexpected obstacle; and the ii) path-following and the time-coordination
algorithms that allow the vehicle to follow the trajectory in a coordinated way.

IV. Trajectory Generation

In this section, we describe our method of generating trajectories that are of particular interest for
atmospheric science missions. Mathematically, the objective of the trajectory-generation algorithm is to find
a desired set of trajectories

pd,i(td) : [0, t
f
d,i] → R

3, ∀i ∈ {1, 2, . . . , N} ,

where N is the number of vehicles, tfd,i ∈ R
+ is the desired mission time for the ith vehicle, and td ∈ [0, Td]

is the time-variable used during the trajectory-generation phase, with Td := max{tfd,1, . . . , t
f
d,N} being the

desired overall mission duration.
One of the key contributions of this method is the use of piecewise Bézier curves for representing tra-

jectories, where each curve is associated with a specific mission time subinterval. Specifically, for the i-th
vehicle, we consider a sequence of im time instants in ascending order

λ0
i = 0, λ1

i , λ
2
i , . . . , λ

im
i = tfd,i.
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Then for each interval [λj−1
i , λj

i ], we denote the j-th curve of the i-th vehicle’s trajectory by p
j
d,i(td),

pd,i(td) = p
j
d,i(td), td ∈ [λj−1

i , λj
i ],

where j ∈ {1, 2, · · · , im}. Furthermore, we represent pj
d,i(td) as a Bézier curve

p
j
d,i(td) =

n
∑

k=0

p̄
j
i,kb

n
k

(

td − λj−1
i

λj
i − λj−1

i

)

, td ∈ [λj−1
i , λj

i ],

where p̄
j
i,k represents the k-th control point for the j-th curve of the i-th vehicle’s trajectory.

Remark 1 Note that each Bézier curve is a polynomial, and is therefore, C∞. Thus, in order to achieve C0

continuity of the trajectory pd,i(td), we only need to ensure that pj
d,i(λ

j
i ) = p

j+1
d,i (λj

i ) for all j ∈ {1, . . . , im − 1}.
Using properties of Bézier curves, we conclude that this can be ensured by appropriately placing the first and
last control point of each Bézier curve. Similarly, C1 (or C2) continuity can be achieved by appropriately
placing the first and last two (or three) control points of each Bézier curve and so on.

We use two different methodologies for generating each Bézier curve. As a result, a single trajectory may
be comprised of multiple curves designed by utilizing different methodologies. Such generation methods are
described in the following sections.

A. Optimization-based Bézier Curve Generation

The trajectory-generation algorithm adopted in this work is based on the methods described in [9,10]. Given
the problem formulation above, this can be formally expressed as

min
p

j

d,i
∈P

i=1,...,N

J(pj
d,i) = min

p
j

d,i
∈P

N
∑

i=1

Ji(p
j
d,i)

subject to boundary conditions,
spatial constraints,
temporal constraints,
dynamic constraints of the aircraft,
mission-specific constraints,

where the P is a subset of Bézier curves. The cost function J(pd,i) can be any variable of interest that
we wish to minimize such as: the total energy associated with the trajectories, an estimate of the fuel
consumption, the deviation from the optimal velocity of the aircraft, or the mission time. Next, we present
a simple classification of the set of constraints the trajectory may be subject to, along with some examples:

• Boundary conditions are the initial and final specifications on the trajectory. Hereof, we consider the
initial and final position, the initial and final path directions, as well as the initial and final velocities.
Some other boundary conditions that can be considered are the initial and final accelerations.

• Spatial constraints are the limits that shall be imposed to ensure a safe separation between a UAS
and all the other elements in the environment. The most common examples are the minimum distance
among vehicles, and the minimum distance between vehicles and obstacles.

• Temporal constraints are the type of assignments that impose some kind of schedule on the trajectories
of the vehicles. Some examples are a relative inter-vehicle schedule, a desired time of arrival, or a
desired window of arrival to the final destination.

• Dynamic constraints of the vehicles considered in this paper are a simplified version of the physical
limits of the UAS. Hence, these assignments depend on the type of vehicle utilized during the mission.
The types of vehicles, and the dynamic constraints considered are:

– Fixed-wing aircraft, typically limited by a minimum and a maximum speed, acceleration, flight
path angle, as well as a maximum turning and pitching rates.

5 of 14

American Institute of Aeronautics and Astronautics



– Rotary-wing aircraft typically fly within an envelope limited by the maximum excess thrust which
determines the maximum total acceleration. Additionally, we can also impose limits on the
velocity of the vehicle.

The optimization exploits the favorable geometric properties of Bézier curves and existing algorithms
to solve the trajectory-generation problem described above. The benefits of using Bézier curves in this
algorithm can be summarized as follows:

• Since Bézier curves are closed under integration and composition, the optimization procedure is able
to take a decoupled approach. Specifically, the algorithm finds i) a quintic Bézier curve as the spatial
path: a curve in space with no temporal specification, and ii) a quadratic Bézier curve as the timing
law associated with the path: a function that captures the temporal specifications of the trajectory.
This approach allows satisfaction of spatial and temporal constraints independently.

• By re-formulating the constraints into Bézier form, the constraint functions can be formulated as
minimum distance problems and, therefore, solved using the minimum distance algorithm7 for efficient
constraint verification.

B. Bézier Curve Generation for Flying Geometric Patterns

Control points of Bézier cuves provide an intuitive control over the shape of the curve. Thus, trajectories for
flying geometric patterns can often be easily designed using Bézier curves. Since, the exact design procedure
varies with the pattern of interest, we show one pattern here as an example.
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Figure 3: Left panel shows the desired path for the
Boustrophedon-like trajectory. Right panel shows
the desired control point locations to achieve such
a trajectory.

Specifically, in this section, we consider a
Boustrophedon-like trajectory for a coverage task.
Unlike a Boustrophedon path, however, we require the
trajectory to be C2-continuous (see Figure 3). Fur-
thermore, we require the trajectory to have constant
speed for as long as possible. Thus, we can design
the trajectory in two steps: i) find constant veloc-
ity straight line Bézier curves and ii) connect those
straight line segments with transition curves such that
the trajectory is C2-continuous.

Straight line segments: let us assume that the j-th
segment for the i-th vehicle’s trajectory is the straight
portion that starts at p̄j

i,0 and ends at p̄j
i,n (see Fig-

ure 3). Furthermore, assume that the desired velocity
for this portion is given as vnom.

Then, using the first three properties of Bézier
curves described in Section IV-A, we conclude that
the control points p̄j

i,k can be spread equally between

p̄
j
i,0 and p̄

j
i,n. Specifically, we have

p̄
j
i,k = p̄

j
i,0 +

k

n
(p̄j

i,n − p̄
j
i,0), k ∈ {0, 1, . . . , n} .

Furthermore, the length of time-interval associated with this segment can be calculated as

λj
i − λj−1

i =
p̄
j
i,n − p̄

j
i,0

||vnom||
.

Transition segments: now we assume that the (j + 1)-th segment of the i-th vehicle’s trajectory is the
transition segment shown in Figure 3. Since we require C2 continuity, the start and end position, velocity and
acceleration of this segment is already specified. For example, the initial position, velocity and acceleration
for this segment is p̄j,n

i , vnom, and 0, respectively. Thus, setting the degree of this Bézier segment as n = 5,
we can use properties of Bézier curves to conclude that

p̄
j+1
i,k =

{

p
j
i,n + kvnom(λ

j+1
i − λj

i ), k ∈ {0, 1, 2} ,

p
j+2
i,0 + (k − 5)vnom(λ

j+1
i − λj

i ), k ∈ {3, 4, 5} .
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Thus, we have 7 free variablesc and 6 constraints. So we can arbitrarily choose the time interval for the
segment λj+1

i − λj
i and calculate the control points using the above equations.

V. Collision Avoidance

In the proposed framework, we adopt the collision-avoidance algorithm originally presented in [11]. This
method is different from the trajectory-generation algorithm of Section IV in two primary ways. First, it is
designed to run onboard vehicles and is, therefore, simpler and lighter in terms of computation. Second, the
algorithm is run independently in all vehicles and does not utilize the knowledge of the trajectories of the
other vehicles.

The algorithm can be divided into two primary steps: i) collision prediction and ii) trajectory replanning,
discussed below.

A. Collision Prediction

Once vehicle i detects an obstacle with a predicted trajectory po(td), the algorithm onboard the vehicle
utilizes pd,i(td) and po(td) as well as the minimum distance algorithm to check for a possible collision in the
future through the collision prediction steps described below:

1. A piecewise Bézier curve that represents the predicted separation between the vehicle and the obstacle
is calculated

d(td) = pd,i(td)− po(td).

2. Using the separation Bézier curve, the minimum distance algorithm can be used to find

min
td∈[λj−1

i
,λ

j

i
]
||d(td)||, argmin

td∈[λj−1

i
,λ

j

i
]

||d(td)||,

for all subintervals [λj−1
i , λj

i ] and i ∈ {1, 2, . . . , im}. Thus,

dmin = min
td∈[0,tf

d,i
]
||d(td,i)||,

can be found. If the minimum distance between the obstacle’s estimated trajectory and the UAS’
trajectory dmin is less or equal than a minimum safety distance dsafe then a collision is predicted.

B. Trajectory Replanning

In case vehicle i predicts a collision, it replans its trajectory by adding a detour ∆(td) to the original
trajectory pd,i(td). The procedure to calculate consists of the following steps:

1. Using a closed form formula, the algorithm first finds start and end time for the detour. In this paper,
we denote the time for start and end of detour as tstartd and tendd , respectively.

2. The algorithm then determines the time profile for the magnitude of the detour over the time interval
td ∈ [tstartd , tendd ]. This time profile is calculated as a Bézier curve,

s(td) =

n
∑

k=0

s̄kb
n
k

(

td − tstartd

tendd − tstartd

)

, td ∈ [tstartd , tendd ],

where s̄k for the first and last three values of k, i.e. k ∈ {0, 1, 2, n− 2, n− 1, n}, are constrained to be
zero. Then, through properties of Bézier curves described earlier, we guarantee that

s(tstartd ) = 0, ds(td)
dtd

∣

∣

∣

td=tstart
d

= 0, d2s(td)
dt2

d

∣

∣

∣

td=tstart
d

= 0,

s(tendd ) = 0, ds(td)
dtd

∣

∣

∣

td=tend
d

= 0, d2s(td)
dt2

d

∣

∣

∣

td=tend
d

= 0.

Now addition of this detour to the original trajectory will maintain C2-continuity of the trajectory.

cThis includes the time interval of the segment along with 6 free control points.
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Figure 4: Illustration of the collision avoidance algorithm: first panel shows the original trajectory (blue)
along with that of the obstacle (red). The separation curve is shown in the second panel. The third panel
shows the replanned trajectory (green) with corresponding separation curve in the fourth panel (red). The
diamond, square and thick black dots indicate tstart, tend and λ’s, respectively. Every unique line type
indicates a single Bézier segment.

3. The detour is finalized by scaling with an appropriate vector. Specifically, the detour is found as

∆(td) = Ks(td)u, td ∈ [tstartd , tendd ],

where u is a unit vector that moves the vehicle away from the obstacle and K is a scaling coefficient
that ensures collision avoidance.

4. Lastly, we add the detour to the original trajectory to obtain

pnew
d,i (td) =







pd,i(td) + ∆(td), td ∈ [tstartd , tendd ],

pd,i(td), otherwise.

Notice that the above equation is not a standard way of adding Bézier curves because of its piecewise
nature. However, using the de Casteljau algorithm, we can separate segments of trajectory where
addition takes place from the segments where it does not. Then, the above implementation can be
performed by standard Bézier curve addition, that results in pnew

d,i (td) being a piecewise Bézier curve.

An illustration of this algorithm is provided in Figure 4.
We now summarize a few benefits this algorithm ensures through Bézier curve representation of trajec-

tories:

1. Imminent collisions can be predicted fast and do not require any discretization.

2. As shown in [11], the algorithm provides bounds on the change in position, velocity and acceleration
required for each collision avoidance maneuver. This can be used to guarantee a certain number of
collision avoidance maneuvers without violating vehicle dynamic constraints.

3. By simply constraining the first and last three control points of the detour curve, the algorithm ensures
C2-continuity for the replanned trajectory.

4. The new detour trajectory found using this algorithm is also a piecewise Bézier curve, thus allowing
seamless continuation of the mission.
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VI. Path Following

The task of the path-following algorithm is to take in the trajectory information and produce commands
that ensure that each vehicle converges to and follows its assigned path.12–17 Due to the fundamental
differences in the configuration of multirotors and fixed-wing aircraft, distinct flight control strategies are
required for these types of vehicles. This section describes the integration of the path-following algorithms
in [14, 17] into the proposed framework.

The underlying idea behind these algorithms is to track a virtual target that slides along the path. For
this purpose, both algorithms follow a similar approach: a moving frame is attached to this virtual target and
a generalized error vector ePF (t)

d is defined. This generalized path-following error characterizes the position
and attitude errors between the coordinate system attached to the virtual target and a frame attached to the
vehicle. It should be noted that the definition of ePF (t) as well as the corresponding control signals uPF (t)
generated are different for fixed-wing aircraft and multirotors, due to the differences in control strategies.

A. Objective

Formally, the purpose of the path-following algorithms is to produce a control signal uPF (t) that ensures
that the generalized path-following error remains within a small neighborhood of zero:

||ePF (t)|| ≤ κ0e
−αt + κ∞,

where λ, κ0, and κ∞ are known non-negative constants and κ∞ defines the uniform ultimate bound (ideally
κ∞ = 0). In this sense, the control strategies to steer different types of vehicles along their path differ in the
following aspects:

• The path-following algorithm for fixed-wing aircraft generates pitch-rate qc(t), yaw-rate rc(t) and speed
vc(t) commands:

uPF (t) := [qc(t), rc(t), vc(t)]
⊤
.

Note also that the algorithm does not explicitly generate a roll-rate command; instead, roll is left as a
free parameter to be determined by the autopilot to achieve the desired yaw-rate command.

• While the path-following algorithm for multirotors produces roll qc(t), pitch qc(t), and yaw rate rc(t)
commands, as well as a total thrust command Tc(t):

uPF (t) := [pc(t), qc(t), rc(t), Tc(t)]
⊤
.

Finally, the autopilot takes in these commands and transforms them into lower level commands such as
throttle δthr(t), rudder δr(t), aileron δa(t), and elevator δe(t) deflections in the case of fixed-wing aircraft;
and angular speed of propellers Ωi(t) in the case of multirotors, where i ∈ {1, 2, . . . , np} and np is the total
number of propellers.

B. Stability Guarantees

In order to prove the performance guarantees of the path-following algorithms for the two types of aircraft in
discussion, the authors assume that each vehicle is assigned a trajectory that does not violate the dynamic
constraints of the vehiclee. In [14,17], the authors prove that, given an ideal inner-loop tracking performance
(the autopilot is capable of tracking uPF (t) perfectly), these algorithms are locally exponentially stable with
a guaranteed rate of convergence and a known domain of attraction (κ∞ = 0). Whereas, for a non-ideal
inner-loop tracking the path-following algorithms are locally uniformly ultimately bounded (κ∞ 6= 0).

dNotice that the error vector is defined as a function of actual time t as opposed to mission time td used during trajectory
generation. Section VII describes the relationship between actual (clock) time and mission time.

eIn our framework, we guarantee constraint satisfaction through the trajectory-generation algorithm.
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VII. Time Coordination

In this section, we provide a brief overview of the relative temporal constraint based algorithm originally
presented in [17, 18]. The purpose of this section is to show how time-coordination algorithms fit into our
framework useful for atmospheric science missions.

The key idea behind time coordination is to define a coordination variable γi for all vehicles i ∈
{1, 2, . . . , N} that maps the actual time to the desired mission time. Mathematically, this can be expressed
as

γi : R
+ → [0, Td], ∀i ∈ {1, . . . , N} .

The commanded position for vehicle i at time t is then defined as pc,i(t) := pd,i(γi(t)). Thus, at any time t,
the parameter γi(t) defines how far in time, the vehicle commanded position has progressed in its mission.

A. Objective

Focusing on relative temporal constraints, the objective of time-coordination algorithm is to ensure all
vehicles are synchronized in the progression of their mission. Mathematically, we say that all vehicles are
coordinated if the time-coordination error

γi(t)− γj(t) = 0, ∀i, j ∈ {1, · · · , N} , i 6= j. (1)

Furthermore, if
γ̇i(t) = 1, ∀i ∈ {1, · · · , N} , (2)

then all vehicles are progressing along the mission at the desired speed.

B. Control Law

Let the evolution of γi(t) be given by

γ̈i = −b(γ̇i−1)− a
∑

j∈Ni

(γi − γj)− ᾱi(ePF,i) ,

γi(0) = 0 , γ̇i(0) = 1 ,

where a and b are positive coordination control gains, while ᾱi(ePF,i) depends on the path-following error
of the i-th vehicle.

The time-coordination algorithms assume typical communication capabilities, as originally introduced
in [19]. If those assumptions are met, and the autopilot exhibits a non-ideal tracking performance, then
the time-coordination error is ultimately bounded. Whereas, if the autopilot exhibits an ideal performance,
the objectives of the time-coordination algorithm, Equations (1) and (2), are met exponentially with a
guaranteed rate of convergence.14, 18, 20

VIII. Simulations

In this section, we provide a simulation for an atmospheric science mission that is of interest to NASA
and the SMD.

A. Mission Description

We consider a mission where a scientist is interested in collecting correlative data around a source of a
pollutant gas. To make the mission challenging, we assume that the location of the source of the pollutant
is unknown and has to be located by flying vehicles in a search pattern over a region of interest. We assume
this region of interest to be a convex polygonal area. Thus, the following steps need to be performed:

1. Divide the search area between the available vehicles.

2. Find trajectories for each vehicle to i) reach the search area, and then ii) fly in a search pattern.
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Figure 5: Left panel shows the island divided between the three vehicles for search. Middle panel shows the
trajectories planned for the three vehicles to conduct the search mission. Right panel shows the trajectories
used in the mission that involves replanning once the source of the pollutant has been located.

3. Once the source is located, replace the remaining search pattern with trajectories that allow each
vehicle to i) reach the correlative data collection region, and then ii) fly in a spiral.

We assume to have 3 multirotor vehicles for the mission, that can fly at a maximum speed of 10m/s and
a maximum acceleration of 10m/s2. Furthermore, we assume various obstacles to be present in the region,
where a distance of dsafe = 1m is required to avoid them. Lastly, we require the trajectories to be at least
C1-continuous for good path-following performance.

B. Dividing the Search Region

The polygonal search region can be easily divided into three parts with equal area using parallel dividers.
Finding the location of parallel dividers is trivial, therefore, we only show the results in Figure 5 (left panel)
where the red, green and blue shaded regions show the search region for vehicle 1, 2, and 3 respectively.
Here, we have divided the region using vertical dividers which is an arbitrary choice.

Notice that the use of parallel dividers ensures that all vehicles can reach their respective search regions
without entering into a different vehicle’s search region. Furthermore, if the vehicles leave their own search
area along the North-South direction (as compared to East-West direction), they will not end up entering
into the search region of a different vehicle. As we will see later, this enables separation between vehicles
during the search operation.

C. Trajectory Generation for Search Mission

Initially, we need trajectories for the search part of the mission. Within the search mission part, we need
vehicle trajectories to i) reach the search area and then ii) fly a Boustrophedon-like trajectory. The designed
trajectories are shown in Figure 5.

To reach the search area, we use our optimization-based trajectory-generation method which ensures that
all vehicles satisfy their dynamic constraints and maintain separation. We generate the trajectories such that
all vehicles reach their search region from below with a final velocity of 5m/s in the North-South direction.
As we will shortly point out, search patterns for all vehicles begin at a velocity of 5m/s in the North-South
direction. Thus, C1-continuity is maintained while the vehicles transition to the search pattern.

Once the curve that gets all the vehicles to the search region is available, we use the method discussed in
Section IV-B to find Boustrophedon-like trajectories with vnom = 5m/s. Notice that this geometric pattern
ensures that vehicles fly either in their own search region, or slightly North or South of it. Thus, we are
guaranteed separation between vehicles by design.

D. Trajectory Generation for Correlative Data Collection

Once the source of the pollutant gas has been located, we need to perform trajectory generation again. This
time, we need trajectories for the vehicles to i) reach the data collection region and then ii) fly in a spiral
pattern. The designed trajectories are shown in the rightmost panel of Figure 5.

To reach the data collection region, we use our optimization-based trajectory-generation method. We
use the current position and velocity of all vehicles for the initial position and velocity constraint. Whereas,
the final position of vehicles is chosen to be in a circle of radius 50m around the pollutant source, separated
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by 120deg each. The final velocity is chosen such that the vehicles start the pattern with a velocity of 5m/s
moving in a clockwise motionf.

For spiral pattern generation, we use the method detailed in [21]. Notice that separation between vehicles
is guaranteed since vehicles are offset by an angle of 120deg.

In order to show satisfaction of vehicle dynamic constraints, we show the speed requirement for each
vehicle according to the planned trajectories in the top panel of Figure 6. Furthermore, we show the the
separation between each vehicle in the bottom panel of Figure 6. In both panels, the shaded regions mark
different phases of the mission: pink for reaching the search area; blue for searching the region; yellow for
reaching the correlative data collection region; and white for correlative data collection.
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Figure 6: Top panel shows the desired speeds for all vehicles for the mission trajectories. Bottom panel
shows the desired separation between the vehicles.

E. Collision Avoidance

We demonstrate collision avoidance using a static obstacle in the path of vehicle 1 before it reaches the
search region. Using the procedure described in Section V, the vehicle replans its trajectory in order to avert
the collision while modifying its trajectory only minimally as shown in Figure 7.
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Figure 7: Panel on the left shows the initially planned trajectory along with the trajectory replanned for
collision avoidance. Panel on the right shows the distance between the vehicle and the obstacle according to
the original and replanned trajectory.

fSince the current position and velocity of the vehicles is chosen as the start of this curve, the vehicles can immediately shift
from the search pattern to the curve while maintaining C

1-continuity. We currently ignore the time required for the trajectory
replanning process which can be up to several seconds.
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F. Path Following and Time Coordination

During mission execution, the vehicles use the path-following and time-coordination algorithms described in
Sections VI and VII (and detailed in [14,15,17,18,20]). In order to show how these algorithms perform with
the generated trajectories, we show the path-following and time-coordination errors in Figure 8, where it is
clear that the path-following and time-coordination errors converge to a neighborhood of zero.
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Figure 8: Top panel shows the time-coordination error between vehicles as the difference between the values
of their coordination variable, whereas, the bottom panel shows the path-following error as the norm of the
difference between commanded and actual position. For clearly showing the initial decrease in error, we limit
the plot to the first 60s of the mission here. The error remains close to zero for the rest of the mission as
well.

G. Real Flight Tests

Apart from simulations, we have also performed flight tests using multirotors. For these flight tests, we
generated spiral trajectories for flying spiral trajectories in coordination. A picture showing a flight test in
progress is shown in Figure 9.

Figure 9: Flight tests in progress.

IX. Conclusion

In this paper, we have presented a piecewise Bézier curve based framework for cooperative missions
particularly suited for atmospheric science missions. We have discussed how properties of Bézier curves
help trajectory generation and replanning while ensuring several desirable behaviors including smoothness,
satisfaction of dynamic constraints, separation between vehicles and collision avoidance. We have discussed
how path-following and time-coordination algorithms fit into our framework in order to achieve coordinated
behavior. Lastly, we have provided a simulation example for a challenging science mission that required
vehicles to fly to different destinations and fly several geometric patterns.
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