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Femtosecond laser electronic excitation tagging (FLEET) and Rayleigh scattering (RS) 

from a femtosecond laser are demonstrated in the NASA Langley 0.3-m Transonic Cryogenic 

Tunnel (TCT). The measured signals from these techniques are examined for their 

thermodynamic dependencies in pure nitrogen. The FLEET signal intensity and signal 

lifetimes are found to scale primarily with the gas density, as does the RS signal. Several 

models are developed, which capture these physical behaviors. Notably, the FLEET and 

Rayleigh scattering intensities scale linearly with the flow density, while the FLEET signal 

decay rates are a more complex function of the thermodynamic state of the gas. The 

measurement of various flow properties are demonstrated using these techniques. While 

density was directly measured from the signal intensities and FLEET signal lifetime, 

temperature and pressure were measured using the simultaneous FLEET velocity 

measurements while assuming the flow had a constant total enthalpy.   Measurements of 

density, temperature, and pressure from the FLEET signal are made with accuracies as high 

as 5.3 percent, 0.62 percent, and 6.2 percent, respectively, while precisions were approximately 

10 percent, 0.26 percent, and 11 percent for these same quantities. Similar measurements of 

density from Rayleigh scattering showed an overall accuracy of 3.5 percent and a precision of 

10.2 percent over a limited temperature range (𝑻 > 195 K). These measurements suggest a 

high degree of utility at using the femtosecond-laser based diagnostics for making 

multiparameter measurements in high-pressure, cryogenic environments such as large-scale 

TCT facilities.  

Nomenclature 

Symbols 

𝑓 = lens focal distance 

ℎ = enthalpy [J/kg] 

𝐼 = Intensity 

𝑃 = pressure [kPa] 

𝑟 = radial coordinate 

𝑠 = generic distance 

𝑡 = time [s] 

𝑇 = temperature [K] 

𝑢 = velocity [m/s] 

𝑥 = stream-wise coordinate 

𝑦 = wall-normal coordinate 

𝑧 = span-wise coordinate 

Fit Coefficients 

𝐴 = SRGE surface fitting 

𝐵 = RS background subtraction 

𝐶 = FLEET decay rate power-law fitting 

𝐷 =   FLEET decay rate empirical fitting 

 

Subscripts and indices 

EF = empirical fit 

FLEET = FLEET 

i = directional index 

j = burst index 

𝑛 = generic position index 

PLF = power-law fit 

                                                           
1 Research Engineer, National Institute of Aerospace, AIAA Member. 
2 Research Scientist, Advanced Measurements and Data Systems Branch, AIAA Associate Fellow. 
3 NSTRF Fellow, Department of Mechanical and Aerospace Engineering, AIAA Student Member. 



 

American Institute of Aeronautics and Astronautics 
 

 

2 

 

Greek Symbols 

𝜀 =   Standard error/accuracy 

𝛾 = FLEET signal decay rate 

𝜌 = gaseous mass density [kg/m3] 

𝜎 = standard deviation 

𝜏 = FLEET signal lifetime 

𝜃 = polar coordinate 

 

RS = Rayleigh scattering 

𝑡 = total (stagnation) condition 

||𝑢|| = constant total enthalpy 

0 = reference condition 

I. Introduction 

DVANCING the predictive capabilities of complex flow simulations and assessing the uncertainties surrounding 

their results relies in part on the availability of high-fidelity experimental data for validation.1,2 While widely 

available for small-scale wind tunnels, the experimental data available for large-scale flow facilities, such as those at 

the various NASA centers, are much harder to find. In particular, there is often a significant lack of information 

regarding true conditions encountered during testing including knowledge of the freestream velocity, vorticity, 

composition, and thermodynamic properties, true model and facility shapes, the state of leading edge boundary layers 

on models, and so forth. As these data often serve as inputs to relevant simulations, achieving convergence between 

experimental and simulation conditions is rarely assured. Furthermore, measurements of velocities and off-body 

thermodynamic conditions in these large-scale facilities for validating simulations are similarly uncommon in the 

literature. 

 A particularly difficult class of facilities to evaluate at this level of detail are known as transonic cryogenic wind 

tunnels (TCTs for brevity), which include facilities such as the European Transonic Windtunnel (ETW) and the 

National Transonic Facility (NTF) at NASA Langley Research Center. While these facilities are prized for their ability 

to produce flight-accurate Reynolds numbers, the manner in which they operate has heretofore made it difficult to 

establish the true state of the test section during experiments. Specifically, these facilities (typically) operate by 

injecting cryogenic liquid nitrogen into the flow path, greatly reducing the operating gas temperature and viscosity 

while simultaneously increasing the density to increase the Reynolds number.3,4,5 Since these facilities operate close 

to the liquid-gaseous saturation point, there is often a significant degree of uncertainty surrounding the composition 

of the test fluid. Moreover, the injection and mixing struts placed within the flow paths of the facilities can lead to 

non-uniform distributions of freestream turbulence and vorticity.6 Finally, due to the very low temperatures 

experienced within the facilities, contraction of models and test section walls can alter the aerodynamic shape of the 

flow path during the course of a test. While all of these parameters could, in principle, be measured, constructing the 

facilities to operate in these extreme conditions often limits the scope of experiments that can be performed in this 

service. As a result, many customer tests only involve integrated drag, lift, and moment measurements in addition to 

standard wall-based temperature and pressure measurements.7  

 To quantify the state of the inflow conditions in TCT facilities, physical probes are often needed including hotwire 

anemometers and pitot rakes for measuring velocities and pressures.6,8 The reasons for this limitation to physical 

probes can vary, but often optical diagnostics that utilize molecular or particulate seeding are functionally prohibited. 

Particle image velocimetry (PIV) and Doppler global velocimetry (DGV) were at one time accomplished in ETW by 

injecting steam-saturated nitrogen into the flow circuit for seeding.9,10 Operational protocols still prohibit this and 

other artificial seeding methodologies at many TCT facilities (including NTF) as there is a high risk of contaminating 

the flow circuit with residual water or any other seeding medium. Only two successful applications of particle-based 

velocimetry were demonstrated at the NASA TCT facilities, which used laser Doppler velocimetry11 and laser transit 

anemometry,12 and the naturally-occurring seeding used was present inconsistently and was quite limited in its range 

of applicable tunnel conditions. Evaluation of off-body thermodynamic conditions poses a different set of challenges 

to researchers. The measurement of surface pressures and temperatures can be achieved using pressure- and 

temperature-sensitive paints, respectively, and have been done to modest success in both the European and American 

TCT facilities.13,14 However, the optical measurement of off-body temperatures and pressures has not thus far been 

achieved. Temperature-sensitive particles, which have been designed to function as thermographic PIV tracers, lose 

sensitivity at the temperature range of interest and are often too large to accurately track flow features in the transonic 

regime (in addition to being prohibited for being particles).15 Furthermore, the application of a technique such as 

coherent anti-Stokes Raman spectroscopy (CARS), which requires very accurate alignment of multiple laser beams, 

is impractical in TCT facilities due to the high amplitude vibrations and limited optical access.  

A 
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 The present study is part of an ongoing effort to improve the measurement capabilities at NASA Langley Research 

Center in support of characterizing flow conditions for complex fluid dynamical simulations. This paper documents a 

series of investigations done in the NASA Langley 0.3-m TCT facility to evaluate commercial femtosecond laser 

technology for making multi-parameter flowfield measurements in high-pressure, cryogenic environments. Two 

independent optical effects are concurrently investigated for their potential in this regard. The first of these studies 

involves a nonlinear optical phenomenon known as femtosecond laser electronic excitation tagging (FLEET).16 In a 

previous study, the FLEET effect was shown to serve as an excellent marker for use in time-of-flight velocity 

measurements in the same facility, possessing both marked accuracy and precision.17 FLEET has also exhibited some 

utility in measuring certain thermodynamic properties over limited ranges of conditions. Previously, spectrally 

resolved FLEET signal was used to make measurements of temperature in a heated jet at atmospheric pressures.18 

Additionally, the FLEET signal has been shown to have significant sensitivity to pressure at standard temperature 

conditions, though the observed trends did not monotonically increase or decrease in such a way to permit a direct 

pressure measurement.19 Rayleigh scattering (RS) from the femtosecond laser pulses is also investigated for its utility 

as a density measurement. Density measurements based on Rayleigh scattering have been made widely in a range of 

different flow regimes.20 The measurement of molecular nitrogen densities has previously been achieved by applying 

Rayleigh scattering in the NASA Langley 0.3-m TCT.21,22 In these past tests, there were difficulties in maintaining 

laser energy stability due to thermal fluctuations and facility vibrations, and independent verification of the results 

was not possible due to the nature of the fluid dynamics test performed concurrently. 

 In the present studies, in addition to its use as a velocimetry technique the FLEET signal intensity and lifetime are 

investigated for their thermodynamic dependencies and use in evaluating flow properties in high-pressure, cryogenic 

environments. Measurements of Rayleigh scattering signal intensity from the same femtosecond laser pulses used to 

generate the FLEET signal are investigated for their utility in measuring freestream densities. The thermodynamic 

dependencies of these three measured quantities are examined in detail. Several empirical models are then constructed, 

which capture the behavior of the FLEET signal decay rate and signal intensities. Finally, these models are employed 

to make measurements of the freestream flow conditions, which are then compared to measurements made by the 

facility data acquisition system (DAS) to assess their accuracy. This paper is structured as follows: after this 

introduction, the experimental setup is discussed. The various analytical methods used in assessing the data are then 

reviewed, followed by an in-depth discussion of the test results and major conclusions. 

 

II. Experimental Program 

The test facility, optical systems, and data acquisition systems that were used in these tests are herein described.  

A. Test Facility 

All experiments were conducted in the NASA Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT).3 This 

facility is a fan-driven, closed-loop wind tunnel capable of operating with a number of different test gases including 

air, nitrogen (N2), and sulfur hexafluoride (SF6).
 For these tests, only nitrogen was used, which is required for the 

highest Reynolds number and lowest temperature operation. The 0.3-m TCT can operate at total pressures ranging 

from 100 to 400 kPa and total temperatures from 100 to 325 K. Additionally, the facility stably operates at Mach 

numbers ranging from 0.2 to 0.75, though there is some flexibility on both ends of this range for short durations. A 

diagram of the facility layout can be found in Fig. 1a. 

 
Figure 1. Tunnel layout. a) Overall schematic of 0.3-m TCT facility (from [4]) and b) perspective view of test 

section and plenum showing optical access. 
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The 0.3-m TCT test section has a double-shelled construction. The inner test section dimensions are 0.33 m × 0.33 

m and is surrounded by an outer plenum of nominally quiescent gas. Optical access for these experiments was afforded 

by a pair of fused silica windows; one large circular window penetrated the outer plenum, while a smaller ‘D’-shaped 

irregular hexagonal window allowed access to the inner test section. The general test section layout with window 

locations is shown in Fig. 1b. 

B. Laser and Optical Systems 

The FLEET measurements utilized a pulsed, regeneratively-amplified Ti:sapphire laser (Spectra-Physics Solstice) 

with a center wavelength of 800 nm, bandwidth of 20 nm, and a repetition rate of 1 kHz. Data sets were collected with 

pulse energies around 1.2 mJ, although between 30 to 50 percent of this energy was attenuated through the beam path.  

The laser system was situated on a platform roughly 3 m above the test section; the beam was brought down to the 

level of the facility with a pair of periscopic mirrors.  

When running at ambient and elevated temperatures the beam was passed straight through the outer window of 

the plenum before going through a 𝑓 = +250-mm spherical lens and the inner ‘D’-shaped window. If operating the 

tunnel at cryogenic conditions, after passing through the outer plenum window, the beam was routed through an 

internal periscope, which was situated inside an evacuated pressure vessel (herein referred to as the laser conduit). 

Due to the large temperature gradient between the plenum and the surrounding environment, large density fluctuations 

are known to exist within the facility plenum.4,5 At the time of the test, it was believed that these density fluctuations 

were responsible for beam-steering and wavefront distortion in the femtosecond laser pulses, which inhibited proper 

beam focusing and a loss of signal below 200 K in a previous test.17 The evacuated periscope, functioning similarly 

to a solution proposed in Ref. 5, was designed to limit the exposure the beam had to this optically unfavorable 

environment. Figure 2 shows an image of the laser conduit within the plenum. Following this periscope, the beam 

passed through a 𝑓 = +200-mm spherical lens before entering the test section through the ‘D’-window. In both optical 

setups, the fs laser pulse came to a focus roughly half-way through the test section, 55 mm from the top wall. Rayleigh 

scattering originating from this same laser pulse was also detected, as described in the next section. 

 

C. Data Acquisition Systems 

1. Imaging Systems 

 The FLEET signal was captured with a high-speed image intensifier (LaVision HS-IRO) lens-coupled high-speed 

CMOS camera (Photron SA-X2). Imaging was done through a 135-mm, 𝑓/2 lens and a shortpass optical filter that 

transmitted wavelengths between 320 and 775 nm. The FLEET camera system was operated in a triggered burst mode; 

bursts of 15 images were captured at 200 kHz with 100 such bursts being captured per second. A lower burst 

acquisition rate was used in comparison to the previous tests17 (100 Hz vs. 1000 Hz) to ensure several full tunnel 

transit times (roughly 4 seconds at the lowest flow rates) had occurred during the data collection. This change allowed 

for both the identification of long term trends in the velocity and potentially prevented biasing in the measured 

velocities and fluctuations. The first image with FLEET signal occurred approximately 70 ns after the laser pulse, 

while the preceding images were used for background subtraction in post-processing. The FLEET camera system was 

situated perpendicular to the test section and imaged through both the outer plenum window and internal window to 

view the FLEET signal in a quasi-boresight configuration, where the camera view is nearly parallel to the direction of 

laser propagation. 

 
Figure 2. Image of laser conduit and RS periscope within 0.3-m TCT plenum. 
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 Rayleigh scattering imaging used a high-sensitivity scientific CMOS camera (LaVision Imager sCMOS) equipped 

with a 105-mm, 𝑓/2 lens and bandpass filter (centered at 800 nm, with a 25 nm FWHM bandwidth), used to pass the 

Rayleigh scattering while rejecting the FLEET signal.  The optical filter was required because the camera, which is 

unintensified, had exposure times that would have collected the FLEET emission in addition to the desired scattering 

signal. Imaging was usually done at 100 Hz, with a 4 ms exposure time; scatter from 4 successive laser pulses was 

captured in each image to increase the signal intensity above the noise floor of the images.  A limited number of single-

shot images were also obtained at some of the highest density conditions tested.  To perform the Rayleigh imaging 

concurrently with the FLEET measurements, a mirror and periscope system routed the camera line-of-sight to be, first, 

orthogonal to the test section, and subsequently, up and through the inner ‘D’-window. An image of the internal 

periscope components can be seen in Fig. 2, while the relative positions of the two cameras and their optical paths can 

be seen schematically in Fig. 3.  

 
Figure 3. Diagram (top-view) of overall optical setup. 

 

2. Facility DAS 

In addition to the camera system, an extensive facility data acquisition system measured the relevant conditions in 

the tunnel. This system comprised an array of static and total pressure probes throughout the facility, as well as 

thermocouple probes and strain gauges. These data were read into a network of facility computer systems for 

processing. Velocities were calculated based on static and total pressure probes and a total temperature probe in 

conjunction with a real-gas equation of state (EOS, Beattie-Bridgeman equation23) for computing the density of the 

gas.  For each FLEET data run (lasting approximately 10 s or 10,000 laser pulses), a data point from the facility system 

was collected for use in validation and verification of the velocity and thermodynamic data in post-processing. 

III. Data Analysis 

The following section describes the methods, which were used in evaluating the various types of data collected in 

these experiments. These analytical methods cover the processing of raw FLEET signal data, the evaluation of 

velocities, extraction of FLEET signal lifetimes, and the overall processing of Rayleigh scattering data. 

A. FLEET Signal Processing 

A sample of the raw FLEET data is shown in Fig. 4a. Unlike the previous test, which showed a nearly axisymmetric 

intensity distribution, the FLEET data are much more ragged in appearance and lack radial symmetry. Consequently, 

the processing algorithms used previously needed to be generalized to accommodate the new data. Processing of the 

raw fleet data required many steps to achieve a usable form. The images first underwent a dark-field correction to 

prevent interference from any mean background intensity. The next steps transformed the background-subtracted 

FLEET images into analytic functions so that both position and intensity information could be ascertained with high 

precision and accuracy. The processing kernel consisted of two parts: a location step and a surface-fitting step. The 

location step was used to mark the rough location of the centroid in the data, which became necessary when the signal 

intensities were lower. For the first image in a burst, the initial centroid location was assumed to be the point of highest 
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intensity in the image; this was generally a valid assumption. Were this assumption to become invalid, the data was 

of too low a signal-to-noise ratio (SNR) to use effectively. For all subsequent images, two-dimensional cross-

correlation was performed twice: once between the first image and the 𝑛th image and once between the 𝑛 − 1st image 

and the 𝑛th image. This step allowed for the determination of the centroid of the FLEET signal to be discerned within 

approximately half a pixel, and further provided a self-contained check to ensure that noise wasn’t biasing the result. 

The displacements obtained in this way were then used to mark out the predicted center of the FLEET signal in the 

𝑛th image of a burst. Since fine-tuning of this position was to be done later, no sub-pixel interpolation scheme was 

used in this predictive step.  

The next step in the processing kernel was the surface-fitting step; a radially asymmetric, but self-similar intensity 

profile was fit to the actual FLEET signal intensity. This procedure is initiated by first assuming the position of the 

peak signal intensity, (𝑥0, 𝑦0), which is taken from the location step previously described. Next, the coordinate system 

is transformed to cylindrical (rather than Cartesian) coordinates. In this new coordinate system, a generic ellipsoid 

(𝐺𝐸) is defined by the equation:   

 𝑟𝐺𝐸 = 𝐴1((𝐴2 cos(𝜃 − 𝜃0))
2 + (𝐴3 sin(𝜃 − 𝜃0))

2)𝐴4  (1) 

This function given by Eq. 1 produces an ellipsoid tilted at some angle 𝜃0, centered at (0,0) in the new coordinate 

system; the various 𝐴𝑛 coefficients refer to parameters which are later fit to the data. The ellipsoid is then shifted and 

pivoted about the center of the coordinate system by an amount (𝑟𝑠,𝜃𝑠). The distance between the original origin and 

the perimeter of this now tilted, shifted, and rotated ellipsoid is measured (shifted, rotated, generic ellipsoid, 𝑆𝑅𝐺𝐸). 

 𝑟𝑆𝑅𝐺𝐸 = √(𝑟𝐺𝐸 cos 𝜃 + 𝑟𝑠 cos 𝜃𝑠)
2 + (𝑟𝐺𝐸 sin 𝜃 + 𝑟𝑠 sin 𝜃𝑠)

2 (2) 

The distance prescribed by 𝑟𝑆𝑅𝐺𝐸  (Eq. 2) is a function solely of the original 𝜃 in the transformed coordinate system. 

This distance is now used as the standard deviation would be in a normal distribution, with the outward distance 

prescribed by the distance from the location of peak intensity: 

 
𝐼(𝜃) = 𝐼0 exp (−

𝑟(𝜃)2

𝑟𝑆𝑅𝐺𝐸(𝜃)
2
) + 𝐴5 (3) 

Thus the entire intensity distribution is a function of the distance and angle from the location of peak intensity. This 

function that has been defined possesses an intensity distribution that is self-similar in the polar direction, but is not 

radially symmetric. A nonlinear least-squares fitting algorithm is used to tune all of the various parameters required 

for this fit. For some data, a summation of two such spots was necessary to recreate the shape of the original signal as 

precisely as possible. The original FLEET data is compared to two cross-sectional profiles in Figs. 4b and 4c. As final 

note to this discussion of the processing kernel, data which saturated the image sensor during acquisition was handled 

differently. Once the incident signal has saturated the image sensor, there is no further sensitivity to further irradiation. 

To avoid the potential bias this could impart to the intensity measurements, all pixels with intensities within 0.5 percent 

of saturation (4075 counts or above in the raw images) were omitted prior to the fitting procedure. Since the gain of 

the intensifier was adjusted to maximize the dynamic range of the measurement and avoid saturation, the appearance 

of saturated data was infrequent and typically only occupied one or two pixels within the image of the FLEET signal 

when it did occur. For further information regarding the linearity of the camera sensor, see Appendix A. 

 After this processing kernel has been run, the coefficients defining the surface are used to map the analytic function 

onto a very fine uniform mesh, typically with a spacing of 0.0001 px. This function is then interrogated for four items 

of information: peak intensity, integrated intensity, location of peak intensity, and location of centroid. Thus, each 

 
Figure 4. Centerline cross-sectional profiles showing details of SRGE fit. a) Raw data, b) horizontal cross-

section, and c) vertical cross-section. 
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image is ultimately reduced to a small number of values for use in later analysis. The two positions extracted from 

these data are then transformed to physical coordinates through a nonlinear matrix transform computed from recorded 

dotcard images. 

B. FLEET Velocimetry 

Flow velocities were computed for individual bursts by numerically approximating the 𝑥 − and 𝑦 − displacements 

of the FLEET spot with a simple linear fit. Previous efforts used various methods for measuring flow velocities from 

similar data, including two time-of-flight methods and a polynomial fitting method.17 While the polynomial fitting 

method provided an accurate fit to the position data, the measured accelerations were found not to be statistically 

significant in the present data, since the data was acquired in the freestream where acceleration is low. Thus, a first-

order polynomial was fit to the function 𝑠𝑖,𝑗(𝑡), where the index 𝑖 refers to the directional index (𝑥 or 𝑦), and 𝑗 refers 

to the present burst. The measured velocity, 𝑑𝑠𝑖,𝑗/𝑑𝑡, was then taken to be the slope of this line. A small fraction of 

data was rejected prior to computing velocities. Notably, FLEET data that exhibited an insufficient fit quality after the 

processing kernel (R2 < 0.7) or insufficient SNR (SNR < 5) were removed. When this occurred, all samples following 

the low-quality image in that particular burst were excluded. To ensure an unbiased and sufficient sampling for 

statistics, only samples computed using the same number of valid frames were used in computing statistics (e.g., if a 

particular sample was constructed using 11 images and another with only three, the one with three would not be 

included in the statistics of the 11-frame sets. Instead, the 11-image sets were  down-sampled to three images and 

compared in that fashion), and a threshold of at least 500 samples was required to consider a velocity with a given 

number of frames.  

A sample of the stream-wise velocity measurement statistics from a Mach 0.75 run set are shown in Fig. 5. Figure 

5a shows the measured velocity as a function of delay time considered in the fit with the measured 1𝜎 velocity 

fluctuations plotted as error bars, while three representative velocity probability density functions (PDFs) are depicted 

in Fig. 5b. A characteristic of this method of evaluating velocities is that, as more frames from the individual bursts 

are included, the measured standard deviations of the entire dataset rapidly asymptote (much more rapidly than the 

methods in Ref. 17) to a nearly fixed value, in this case approximately 0.6 percent of the freestream velocity or 1.5 

m/s. For each dataset, the ensemble of measured velocities, the mean corresponding to the lowest measured standard 

deviation of velocity, as well as the standard deviation itself, were stored for later analysis and use in analyzing 

thermodynamic conditions.  

In the present studies, the lower limit on the velocity precision was measured to be 0.4 m/s (measured in quiescent 

𝑁2), which represents a nearly 20 percent decrease (i.e.,improvement) over the measurements taken in the previous 

test.17 Moreover, there was an overall improvement to the quality of the data: more frames and bursts contained usable 

data, and the dependence of the FLEET signal lifetime on the Mach number was no longer present (since attributed to 

an occluded laser beam and the motion of the tunnel in response to changing operating conditions). Ultimately, these 

improvements allowed for larger data ensembles as well as an improved sensitivity to freestream velocity fluctuations; 

consistent statistics could be generated with larger numbers of frames independent of the operating conditions. Since 

this paper is focused on the thermodynamic behavior of the signals and their use in evaluating the tunnel conditions, 

 
Figure 5. Sample velocity measurement from a Mach 0.75 data run. a) Evolution of mean velocity with an 

increasing number of frames and b) sample velocity pdfs at different time delays. 
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any further discussion of the velocity will be omitted in the results. The measurement accuracy for the velocity was 

found to be approximately within 1.5 percent, while the measured velocity fluctuations ranged from 0.3 percent to 5.6 

percent, with the mean level of fluctuations lying at 0.7 percent. 

 

C. FLEET Signal Lifetime 

 Using the procedure outlined in Section III.A, extensive time series of FLEET signal intensities could be 

constructed. One such trace is depicted in Fig. 6, collected with a sampling rate of 400 kHz. As will be shown in 

subsequent sections, the decay of the FLEET signal intensity is strongly tied to the thermodynamic properties of the 

surrounding gas. Thus, there was interest in studying the variations of the signal lifetime with respect to said 

conditions. However, during the course of the analysis, it was found that representing the decay with exponentials was 

quite cumbersome. The decay curves in Fig. 6a and b are fit with representative exponential functions to show the 

resulting quality of the fit. The true signal decay is best modeled with a tri-exponential function; this function is the 

only way to capture the long-term behavior of the signal intensity. However, the large number of correlations that 

could be constructed and analyzed for dependence in this manner, including the individual lifetimes, ratios of lifetimes, 

ratio of each component of the exponential to the entire decay curve, and so forth, made it difficult to get a clear 

picture of the thermodynamic behavior. To simplify the analysis, an empirical approach was taken to model the 

lifetimes. Each signal decay curve was first fit was a tri-exponential function to capture its total decay behavior. From 

this analytical fit, two different values were extracted: the time it took the signal to fall to 1/𝑒 of its initial value 

(henceforth called 𝜏1), and the time it took to fall to 1/𝑒2 of its original value (𝜏2). These two ‘lifetimes’ were then 

used in all the analysis that follows. While this approach was originally taken to avoid the complexities of modeling 

the sheer number of parameters involved in the fitting procedure, it also proved to be more resistant to experimental 

noise than the direct fitting method since it was not functionally dependent on the exact values of the fitting parameters.  

 
Figure 6. Example FLEET signal decay curve and exponential fits to data. a) Linear intensity scale and b) 

logarithmic intensity scale. 

D. Rayleigh Scattering 

A sample raw Rayleigh scattering image (containing some FLEET signal at the focus) is shown in Fig. 7a. The 

processing of these data involved, first, the rotation of the image to align the Rayleigh scattering signal with the image 

coordinates. After rotation, the images were cropped to include only the laser signal and a minimal number of 

surrounding pixels. Next, a numerical background subtraction procedure was implemented, which fit a bi-directional 

polynomial to the cropped and rotated raw images, avoiding areas containing the scattering signature. This polynomial 

was of the form: 

 𝐵𝐺𝑅𝑆(𝑦, 𝑧) = 𝐵1(𝐵2𝑧
2 + 𝐵3𝑧 + 𝐵4)(𝐵5𝑦

2 + 𝐵6𝑦 + 𝐵7) + 𝐵8 (4) 

This background was then subtracted from the raw images. A linear scaling factor is then applied to the image 

coordinates to bring them into the physical domain. An example of a processed Rayleigh scattering image is shown 

in Fig. 7b. The columns of each such image were then summed to create a span-wise trace of the RS signal, an example 

of which is given by Fig. 8. 
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 Evaluation of the Rayleigh scattering signal also required discriminating the Rayleigh scattering from the residual 

FLEET signal emission present at the center of each image (even though a spectral filter blocked most of the FLEET 

signal). To do this, the Rayleigh scattering signal was assumed to be the mean signal of the first 50 data points on both 

sides of the signal trace. The sample trace shown in Fig. 8 has these regions highlighted in red. These data were taken 

for every Rayleigh scattering image collected, and the ensemble, mean, and standard deviations were kept for use in 

later analysis.  

 
Figure 7. Sample Rayleigh scattering images. a) Raw RS image and b) processed RS image. 

 

 
Figure 8. Sample Rayleigh scattering signal trace. Pure RS signal is highlighted. 

 

 

IV. Results and Discussion 

 

The results from these tests are broken into three primary sections: the thermodynamic dependencies of the FLEET 

and Rayleigh scattering signals, modeling the behavior of these signals, and the estimation of thermodynamic 

conditions within the facility. 

A. Thermodynamic Dependencies of FLEET and Rayleigh scattering signals 

 

1. FLEET signal intensity 

The response of the FLEET signal to reduced pressure in air and molecular nitrogen has been studied in some 

detail by DeLuca et al.19 These studies, which were conducted at standard temperatures, did not exhibit a monotonic 
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trend with respect to the pressure. Rather, the signal was found to follow two distinct behavioral trends, depending on 

the pressure regime. At the higher end of their pressure domain (approximately 100 kPa), the FLEET signal intensity 

was found to be proportional to pressure. At intermediate pressures (1-10 kPa), the gas behaved very differently 

depending on its composition. In air, the signal leveled off and was found to be largely insensitive to pressure. In 𝑁2, 

the signal began to increase slightly as pressured decreased in this regime.  Finally at still lower pressures, the signal 

rapidly climbed and leveled off in air, while in nitrogen, the FLEET signal slowly decreased as the pressure was 

reduced. Given the complex kinetics involved in the generation and sustenance of the FLEET signal, attempting to 

extrapolate these trends to the high-pressure, high-density regimes present in TCT-type facilities is likely to yield 

inconsistent results at best. Thus, there is merit in studying the fundamental response of the FLEET signal intensity in 

the desired regime.  

The initial FLEET signal intensity measured in this testing campaign is plotted as functions of pressure, 

temperature, and density in Fig. 9. These data were collected 70 to 80 ns after the laser pulse had occurred, and 

approximately 2000 such shots were used in computing the statistics for each point. These data comprise a rather 

sizeable matrix of different temperatures and densities, and thus the data that is displayed appears very scattered. In 

Fig. 9a, it is seen that there is a clear trend of increasing signal intensity with increasing pressure. There is still notable 

vertical spread of the points at every pressure, suggesting a secondary effect leading to the increase in signal. In fact, 

the primary difference in these points is the temperature at which they were taken. Notably the highest points at each 

pressure represent the lowest temperature at that pressure condition. This trend is echoed in Fig. 9b, which shows the 

same data plotted with respect to temperature. Here again, there is a slight upward trend with decreasing temperature, 

with the points of highest intensity corresponding to the highest pressure cases. This direct proportionality to pressure 

and inverse proportionality to temperature suggests that the changes in intensity are largely a density effect. To verify 

the magnitude of this correlation, Fig. 9c again plots this data with respect to the local static density of the gas. Here 

a distinct trend becomes apparent; the signal intensity appears to be linearly dependent on the density of the gas. This 

trend is verified up to approximately 400 kPa pressure and static temperatures as low as 145 K. The observed behavior 

of the FLEET signal with respect to density over a wide range of temperatures and pressures does suggest some utility 

in using the FLEET signal intensity as a metric for density in this pressure and temperature regime. The agency of this 

potential measurement technique is explored in the next two sections.  

 

 
Figure 9. Thermodynamic dependencies of initial FLEET signal intensities. a) Pressure dependence, b) 

temperature dependence, and c) density dependence. 

 

A final note about these data concerns the range of temperatures over which the data was collected. In Fig. 9, there 

are a number of points marked in red, which represent data collected below total temperatures of 167 K. This 

demarcation is made to note a procedural change in the data collection. Specifically, when operating the 0.3-m TCT 

facility in cryogenic mode, the tunnel slowly contracts as the body of the tunnel cools. As this occurs, the femtosecond 

laser beam slowly moved out of alignment. Above total temperatures of 167 K, access to the facility was still possible, 

and so adjustments were made to the optical path to compensate for this contraction. However, on this particular day 

of testing, a nitrogen leak developed in the vicinity of the tunnel, and direct access to the optics was not possible below 

this temperature since the leak rate tended to increase as the tunnel experienced further contraction. Consequently, the 

beam grew increasingly clipped on the laser conduit as the temperature decreased below this point, and the subsequent 

trend with density fell away. However, it is unclear if the trend would have continued as expected. The points furthest 

from the linear trend all represent the highest pressure conditions at their respective total temperatures. Thus, it is 
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possible that a secondary effect is also influencing the measured signal intensities. The nature of this effect is unknown; 

it is possible the tunnel experiences slight motion as the pressure is changed, exacerbating problems caused by the 

clipped beam profile. It is also possible that the density fluctuations in the plenum reach a critical level where they 

begin to alter the beam profile sufficiently to interfere with the FLEET signal generation, even with the presence of 

the laser conduit. Finally, there could be a transition in the underlying kinetics at high pressures that results in the 

decreasing intensity. The current data are insufficient to make a clear assertion, but in light of the circumstances, the 

range of validity for these measurements is to total temperatures above 167 K until further investigation is possible. 

 

2. FLEET signal lifetimes 

 The thermodynamic dependence of the FLEET signal lifetimes are not well understood; there have been no 

definitive studies about the behavior of the FLEET signal lifetime and only a few cursory studies. The results from 

DeLuca et al.19 have some information regarding the time-evolution of the FLEET signal at reduced pressures. The 

lifetime of the FLEET signal appears to follow similar trends to the initial signal intensity; a rapid decay is found 

above 10 kPa or so, while the behavior becomes far more erratic at reduced pressures. Another study by Michael et 

al.24 looked at a single case of signal decay (at STP conditions), which indicated a bi-exponential decay over a time 

history of 10 𝜇s. Thus, there is not a plethora of information regarding the behavior of the FLEET signal lifetime with 

respect to thermodynamic conditions, with no data currently available for the thermodynamic ranges of interest (80 K 

to 300 K, 100 to 400 kPa). 

 As discussed in Section III.C, the signal decays were reduced to two empirical lifetimes to simplify the data 

analysis. The behaviors of these two lifetimes are plotted against temperature at three different pressures in Fig. 10a-

c. Before discussing specific trends, it is worth noting that data on lifetimes was collected with static temperatures as 

low as 80 K. Despite the misalignment and occlusion of the beam as discussed in Section IV.A.1, the lifetime data 

was not clearly influenced by this effect. Since the lifetimes are measured relative to the initial signal intensity, the 

data is self-normalizing, and thus the observed trends were not affected in a similar manner. There is some chance that 

the reduced energy of the laser pulse is influencing the lifetime of the signal, but there was no clear evidence of such 

disparity in the data. Looking at the data for the signal decay, clear trends are apparent in both lifetimes. Specifically, 

both lifetimes decrease with increasing pressure and decreasing temperature, suggestive again of a strong density 

dependence. This type of trend is also reminiscent of the collisional-quenching of fluorescence, which exhibits similar 

dependence on the thermodynamic conditions.  

 To help expound on these observations, the combined lifetime data is plotted as a function of density in Fig. 11. 

Here again, as with the initial signal intensity, the scatter observed over different thermodynamic conditions collapse 

into a single trend when plotted against the density. Notably, there is a clear trend of decreasing lifetime with 

increasing density, though the dependence is not linear as was the case with the initial signal intensity. The observed 

density dependence suggests further that the signal lifetime or lifetimes could be collectively used as a means to 

measure density without the limitation imposed on the initial signal intensity by the beam occlusion. Repeated 

measurements on subsequent testing days, during which adjustments were made to improve the alignment and higher 

data collection rate was used, confirm the values of the lifetime figures herein presented. The repeatability also 

indicates that the measured lifetime values, while certainly dependent on the particular optical setup, remain consistent 

if no major system parameters (lens focal lengths or laser pulse energy) are altered and beam alignment is maintained 

 
Figure 10. FLEET signal lifetimes versus temperature at different static pressures. a) 86 kPa, b) 177 kPa, and 

c) 276 kPa. 
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3. .Rayleigh scattering signal intensity 

Rayleigh scattering has been applied on two separate 

occasions in the NASA Langley 0.3-m TCT facility.21,22 These 

experiments, conducted first along a line, and later, with planar 

measurements, were able to demonstrate Rayleigh scattering 

signals directly proportional to nitrogen molecular densities 

over the full range of tunnel operating conditions. However, 

because of the laser wavelength and low laser energies used in 

the present experiment, it was unclear whether the scattering 

efficiency would be sufficiently high to render the Rayleigh 

scattering measurements viable. The previous measurements 

were all conducted with Nd:YAG lasers operating at a 

wavelength of 532 nm, while the femtosecond laser used in 

these experiments had a center wavelength of 800 nm and a 

bandwidth of 20 nm. These differences reduce the scattering 

efficiency by over 80 percent while simultaneously increasing 

the difficulty of filtering background radiation due to the 

broader spectrum of the laser pulse. The laser pulse energy also 

was limited to approximately 1 mJ for the FLEET 

measurements, reducing the available intensity for single-shot 

RS imaging. 

 The measured Rayleigh scattering signal intensity is plotted as a function of gas density over two different total 

temperature ranges in Fig. 12. For total temperatures greater than or equal to 215 K (Fig. 12a), the signal follows the 

expected linear trend, indicating a strong correlation between the observed signal and the molecular density of the gas. 

These measurements were based on the averages of several hundred long-exposure (4 ms) images, each of which 

captured four laser pulses. While some single-shot images were captured, the observed signals were generally too low 

to distinguish the scattering from the background intensity except at the highest flow densities. As indicated by Fig. 

9, noise within a given image amounted to a RMS noise level of just over 100 counts.  With a detection signal-to-

noise (SNR) threshold of unity, this made single-shot Rayleigh scattering over the entire range of densities infeasible, 

and so the results are not herein presented. Nonetheless, the data based on the summed images collected in this study 

show promise at acting as a density measurement technique within the 0.3-m TCT facility, despite the non-optimal 

laser used in the measurement. It also should be noted that a change in the optical system such as a camera lens with 

a higher collection efficiency or an imaging sensor with higher sensitivity or gain could make single-shot RS 

measurements possible in future tests. 

 The demarcation at 215 K noted above does not coincide with the misalignment issue experienced with the FLEET 

signal intensity discussed in Section IV.A.1. At all total temperatures below 215 K, a phenomenon acted to 

dramatically increase the Rayleigh scattering signal. This observation is demonstrated in Fig. 12b. The misalignment 

of the beam was also observed and intermittently corrected when possible. Since the molecular scattering scales 

linearly with the incident laser energy, beam misalignment and clipping on the laser conduit would act to decrease the 

observed intensity. The phenomenon also appeared to happen very inconsistently; there was no obvious trend with 

pressure or temperature. 

 In character, the scattering appeared quite different once this problem started occurring. Figure 13 shows three 

representative scattering images taken at different total temperatures but the same static density (3.35 kg/m3). The 

scattering observed in Fig. 13a is characteristic of the scattering seen above 215 K total temperature; faint, uniform 

scattering is present on the edges of the images flanking a central bright region where the FLEET signal is being 

generated. The next two conditions, Fig. 13b taken at a total temperature of 133 K and Fig. 13c at 100 K, show two 

different extents of the scattering phenomenon. To different degrees, the scattering signal has increased by almost an 

order of magnitude while the central FLEET signal is misshapen. Additionally, Mie scattering from discrete particles 

was observed in many images, though they are lost in the means shown in Fig. 13. 

 While only speculation, this dramatic change in the signal character is most likely scattering off of a condensation 

fog or a byproduct of the liquid nitrogen injection. The size of the individual droplets are, in general, far below the 

resolution of the camera system but much larger in scattering cross-section than nitrogen molecules. While further 

work is underway to understand this scattering, it does appear from the time history of these data that the phenomenon 

is associated with rapid changes in the thermodynamic conditions, notably changes in the pressure. No occurrences of  

 
Figure 11. FLEET signal lifetimes versus 

density. 
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this phenomenon were reported in the previous two Rayleigh scattering attempts,21,22 suggesting it is either a 

malfunction of the facility or is associated with the manner in which the current tests were conducted. Nonetheless, 

molecular Rayleigh scattering was collected over a broad range of the NASA Langley 0.3-m TCT facility, and was 

shown to vary linearly with the mass-density of the gas. Due to the issue experienced at lower temperatures, the range 

of utility is limited to total temperature conditions above 215 K for the present data. 

 
Figure 12. Rayleigh scattering intensity versus density. a) Data taken at total temperatures greater than or equal 

to 215 K and b) data taken over the entire facility operational envelope. 

 
Figure 13. Comparison of mean Rayleigh scattering images at three different total temperature conditions, 

constant density, 𝝆 = 3.35 kg/m3. a) 𝑇𝑡 = 245 K, b) 𝑇𝑡 = 133 K, and c) 𝑇𝑡 = 100 K. 
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B. Modeling the Thermodynamic Behavior 

With the dependencies of the signal intensity and lifetime data 

established, a number of models can be constructed for use in 

evaluating the thermodynamic conditions in the facility. The 

modeling is all based on a small subset of the data taken within the 

facility, which is being termed the ‘calibration set,’ and consists of 

approximately 20 data sets (each containing approximately 2000 

independent measurements) over the full tunnel operational 

envelope (all available 𝑃𝑡 , 𝑇𝑡  conditions). Though the values for the 

various modeling coefficients are given in the following sections, 

note that they are only valid for the present datasets and are not 

meant to suggest a universality to all data. However, the procedure 

and methodologies outlined are sufficiently general to be extended 

to other similarly collected data. As a final statement, only the 

ranges of validity established in Section IV.A are considered in the 

modeling so that physical effects not associated with the 

measurement technique itself are omitted.  

 

1. FLEET signal intensity 

The FLEET signal intensity in the calibration data set was 

observed to vary linearly with the flow density. The simplest 

model to construct for this behavior is simply: 

 

 𝜌

𝜌0
=
𝐼

𝐼0
 (4) 

 

That is, assuming that the behavior is consistent, the changes in density should be directly proportional to the changes 

in intensity. The reference parameters, 𝜌0 and 𝐼0, were selected to be the first point in the calibration data set. The 

value of these two parameters for this data set are 1.17 kg/m3 and 8.832×104 a.u., respectively (where 𝜌0 corresponds 

to atmospheric density). The fit to the intensity data is shown in Fig. 14. As noted in Section IV.A.1, the measurements 

based on the FLEET signal intensity are limited to total temperatures above 167 K for the present data due to the 

misalignment of the femtosecond laser beam. 

 

 

2. FLEET signal lifetime 

There were two observed trends with the signal lifetime data. First, there was a strong density dependence, and 

second, the behavior was reminiscent of the collisional quenching of fluorescence. These observations suggests a 

number of paths forward for determining thermodynamic conditions from the signal lifetime. The lifetime, or two 

lifetimes, could be used to measure the density directly. Alternatively, the combined pressure/density/temperature 

dependence could be modeled, and with a secondary means of determining the density, the missing thermodynamic 

condition could be extracted from the model. To stay with convention in this discussion, rather than working with 

lifetimes decay rates shall be used instead: 𝛾1 = 1/𝜏1 and 𝛾2 = 1/𝜏2. 

To model the density as a function of either decay rate requires a power-law fit. In this case the most practical 

approach used the following:  

 

 𝜌

𝜌0
= 𝐶1 (

𝛾

𝛾0
)
−𝐶2

+ 𝐶3 (5) 

 

This is a purely empirical fit, and does not attempt to model any of the physical dependencies one would expect.  

Nonetheless, the fits constructed by this equation are sound, depicted in Fig. 15 with the underlying decay rates. The 

relevant fit parameters for these two empirical models are summarized in Table 1. 

 

 

 

 

 
Figure 14. Comparison of FLEET signal 

intensity and density scaled with their 

reference values. 
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Figure 15. Density versus FLEET signal decay rates with power-law fit. a) 𝛾1 and b) 𝛾2. 

 

 

Table 1: Power-law fit parameters for FLEET signal decay rates 

Decay rate 𝜌0 [kg/m3] 𝛾0 [kHz] 𝐶1 𝐶2 𝐶3 

𝛾1 1.17 46.2 2.27   0.547 -1.05 

𝛾2 1.17 14.5 1.67 0.667 -0.549 

 

 A physical model can also be developed, which captures the behavior of the decay rates. Following the collisional 

quenching analogy, the total decay rate could be modeled as the sum of a ‘natural’ decay rate, which is independent 

of the collision rate of the molecules (though in this case it is likely a function of laser pulse energy and excitation 

wavelength), and an additional deexcitation rate associated with molecular collisions. Constructing a full model such 

as this requires not only accurate measurements of the thermodynamic conditions, but also the constitutive species 

present when the measurement was taken. Such analysis is simply not possible with the current datasets. However, a 

similar model can be constructed, which amalgamates the behavior of these different terms. The proposed model is of 

the form: 

 
𝛾 = 𝐷1 + 𝐷2 (

𝑃

𝑃0
)
𝐷3

(
𝑇

𝑇0
)
𝐷4

 (6) 

In a traditional collisional quenching model, the coefficient 𝐷3 should equal unity, and the temperature dependence 

comes from density effects, the mean collisional velocity, and the collisional quenching cross-section. The fit of this 

model to the present data is shown in Fig. 16; 𝛾1 and 𝛾2 are shown in Figs. 17a and 17b, respectively.  

 
Figure 16. Comparison of pressure-based empirical fits to FLEET signal decay rates. a) 𝛾1 and b) 𝛾2. 
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 A similar model can be constructed using density instead: 

 
𝛾 = 𝐷1 + 𝐷2 (

𝜌

𝜌0
)
𝐷3

(
𝑇

𝑇0
)
𝐷4

 (7) 

The density-based fits for the signal decay rates are given in Figs. 18a and 18b, while the fit parameters for both the 

density- and pressure-based fits are summarized in Table 2. When modeled with respect to density, it can be seen that 

the temperature dependence (𝐷4) becomes quite small, particularly for the 𝛾2 case. This further supports the notion 

that the observed changes in the FLEET signal decay rates/lifetimes are exclusively a density effect, at least within 

these temperature and pressure domains. While using the physical models may help illuminate subtle thermodynamic 

dependences, it is questionable whether doing so provides utility in making a thermodynamic measurement. In 

particular, since the density effect is so dominant, there is likely little sensitivity to temperature when applying the 

model. This is discussed in further detail in Section IV.C. Finally, both the physical model and the power-law fits, 

since they are based on the signal lifetime, are applicable over the full operational range of the tunnel for these data 

sets.  

 
Figure 17. Comparison of density-based empirical model with FLEET signal decay rates . a) 𝛾1 and b) 𝛾2. 

 

 

Table 2. Summary of fit parameters for physical empirical model 

Decay rate 𝜌0 [kg/m3] 𝑃0 [kPa] 𝑇0 [K] 𝐷1 [kHz] 𝐷2 [kHz] 𝐷3 𝐷4 

𝛾1 
n/a 85.8 247 22.9 18.2 1.56 -1.82 

1.17 n/a 247 21.4 19.5 1.52 -0.203 

𝛾2 
n/a 85.8 247 4.90 8.30 1.40 -1.52 

1.17 n/a 247 4.28 8.88 1.36 -0.076 

 

3. Rayleigh scattering signal intensity 

Section IV.A.3 demonstrated that, over a limited range of the tunnel operating conditions, the Rayleigh scattering 

signal intensity was directly proportional to the nitrogen density. This same trend can potentially be used to serve a 

measurement of density. Since it too followed a linear dependence, the same equation used to model the FLEET signal 

intensity data (Eq. 5) can be used to model the Rayleigh scattering. The resulting fit is presented in Fig. 18. The 

relevant fit parameters are: 𝜌0 = 1.17 kg/m3 and 𝐼0,𝑅𝑆 = 69.3. As noted in Section IV.A.3, the range of applicability for 

the Rayleigh scattering measurements in this data set are all total temperatures greater than 215 K, so this graph 

contains fewer points than the previous ones. 
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C. Estimation of Tunnel Operating Conditions 

This section discusses the accuracy and precision of 

thermodynamic measurements made using the models 

discussed in the previous section. These measurements 

utilize all data acquired across the tunnel operating 

conditions, rather than just the calibration set used in 

constructing the models.  

 

1. Static Density 

As discussed in the previous section, both the signal 

intensities and the FLEET signal lifetimes were quite 

sensitive to density. Consequently there are a number of 

ways to measure the density from the different models; there 

are a total of four methods available from the 

thermodynamic models that were developed in the previous 

section. Refer to Appendix B for an in-depth discussion of 

the methodologies involved in each of these approaches. 

A comparison of the density measurements made using 

the FLEET signal intensity data with the measurements 

made by the facility DAS is shown in Fig. 19a. The 

predictive agency of this method is limited principally by 

the total temperature range discussed in Section IV.A.1. If 

only the data taken at total temperatures in excess of 167 K 

are considered, the mean standard error (in comparison to the DAS measurements) is 5.26 percent across all densities. 

Moreover, the mean measurement precision, herein defined as one standard deviation from the probability density 

function generated at each measurement point, was approximately 10 percent, though this does vary from set to set. 

A similar assessment can be made using the Rayleigh scattering measurements; a comparison with the facility DAS 

is shown in Fig. 19b. Again, the primary limitation to this measurement technique is the available total temperature 

range (above 215 K for the Rayleigh scattering measurements per Section IV.A.3). Above this demarcation, the mean 

standard error is within 3.55 percent, while the measurement precision here was again found to be approximately 10 

percent. 

The FLEET signal lifetime provided two separate routes for measuring the gaseous density. The first method is 

based on the empirical power-law fit from Section IV.B.2; a comparison of these measurements with those of the 

facility DAS are presented in Fig. 19c. Unlike the intensity-based measurements, the decay-rate-based measurements 

are possible over the entire total temperature range of the facility. The mean standard error for these data was found 

to be approximately 6.6 percent, and the measurement precision was approximately 12 percent. It should also be stated 

that at the lowest total temperature condition, the measurement precision was notably worse (approaching nearly 26 

percent at the highest-density condition). Finally, a second method is available to measure the density from the FLEET 

signal decay rates. This method utilized information from both measured decay rates and the model equations (Eq. 7) 

to directly solve for the density. The measurements made in this manner are shown in comparison to the facility DAS 

measurements in Fig. 19d. These results are very similar to those made with power-law fit. Again, the applicable 

temperature range is the full tunnel operational envelope. The measured standard error was on average 7.2 percent, 

while the mean precision was approximately 10 percent. A summary of these four different density measurement 

techniques is shown in Table 3.  

 

Table 3: Comparison of different methods for calculating density. Only data within scope of model is considered. 

 

 Assessing these measurements in a broader context is difficult due to the unusual temperature and pressure 

conditions in which the measurements were being made. Inferred density measurements in similar conditions made 

by Woodmansee et al. using high-resolution 𝑁2 coherent anti-Stokes Raman spectroscopy (CARS) in a lab-scale  

 
Figure 18. Comparison of Rayleigh scattering 

intensity with density, scaled against reference 

values. 

Method 𝑇𝑡 range [K] 𝜀 [%] 𝜎𝜌/𝜌 (mean) [%] 𝜎𝜌/𝜌 (min) [%] 𝜎𝜌/𝜌 (max) [%] 

FLEET signal intensity 167 – 300 5.26 10.0 7.26 28.6 

RS signal intensity 215 – 300 3.55 10.2 4.86 18.4 

Decay rate power-law fit 100 – 300 6.62 12.3 5.91 25.9 

Dual decay empirical fit 100 – 300 7.23 9.99 6.31 20.9 
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Figure 19. Comparison of density measurements with facility DAS. a) FLEET signal intensity, b) RS signal 

intensity, c) FLEET decay rate power-law fit, and  d) FLEET dual decay rate. 

 

underexpanded jet showed a few percent error (not stated overtly) when comparing their measurements to a theoretical 

distribution, and precisions ranging from between 4 to 10 percent.25 Density measurements made via nitric oxide laser-

induced fluorescence by Gross et al. operated with a measurement uncertainty of 2 percent in a moderate pressure, 

low temperature flow (Mach 2 turbulent boundary layer).26 Filtered Rayleigh scattering (FRS) experiments of Forkey 

et al. 27 showed total measurement uncertainties of approximately 5 percent in measuring gaseous densities. 

Additionally, absolute molecular density measurements made by Balla and Everhart in a low-temperature Mach 10 

flow yielded precisions between 32 and 6 percent, with the larger imprecision occurring at the lowest densities.28 

Ultimately, though the conditions under which the measurements were made were not identical, similar accuracies 

and precisions were observed with these density measurements as were those made with other optical diagnostics.  

 The measurements statistics in Table 3 suggest certain limitations to the applications of these density measurement 

techniques. The most obvious of these is the applicable total temperature range. This particular point is not anticipated 

to be a recurring problem for the measurement techniques; a simple engineered solution to properly accommodate the 

contraction of the tunnel would eliminate this cap on the measurement techniques. Perhaps a greater concern is the 

precision with which the measurements can be made. Typical transonic flows (in particular wakes and boundary 

layers) do not show the significant (order of magnitude) density changes observed in supersonic and hypersonic flows. 

For example, the wake behind a transonic body may show a density variation between 8 and 10 percent of the nominal 

freestream value. As a consequence, a higher precision is desirable since it would allow these subtle density changes 
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to be identified. With the current measurement precision, it is unclear whether sufficient sensitivity exists to detect a 

subtle density change as described. The imprecision stems from varying sources. In the case of the FLEET signal 

intensity, the imprecision is a result of the shot-to-shot variability in the laser pulse energy. Since the signal intensity 

is nonlinearly dependent on the pulse energy, an exaggerated variability is imparted to the intensity measurement, 

leading to a more imprecise density measurement. The Rayleigh scattering signal intensity similarly suffers from 

variability in the laser pulse energy. Additionally, the presence of extraneous scatterers in the facility (mostly random 

bits of dust and debris trapped in the flow-conditioning screens that are liberated during tunnel operation), add an extra 

unsteadiness to these measurements, which unfavorably biases the measurement precision. Though care was taken in 

the data reduction, accounting for every such occurrence in the large ensembles of data was an impracticality.  

 The lifetime-/decay-rate-based measurements are instantaneously quite susceptible to the laser intensity variations 

as well. While the lifetimes are self-normalizing in intensity, they are weak functions of the exciting laser energy. One 

report in the literature by DeLuca et al.19 suggested a 1/𝑒 lifetime of nearly 150 𝜇s when using a 6 mJ/pulse 

(approximately an order of magnitude more energy than that used in the present study), which is several times the 

duration of the longest 1/𝑒 lifetimes recorded in the present studies. Thus, while dependence of the FLEET signal 

lifetime(s) is not as strong as that of the initial FLEET signal intensity, some sensitivity to the shot-to-shot intensity 

variations should be expected. Moreover, the two measured decay rates vary differently with the laser energy, adding 

a further degree of imprecision to the measurements. An additional effect observed in more recent measurements by 

the authors (though not necessarily applicable in these studies) suggest the lifetime of the FLEET signal is also very 

sensitive to the local strain rate of the gas. Thus, it ultimately may prove impractical to try to isolate the 

thermodynamic effects from all the various factors that influence the lifetime of the FLEET signal, except in special 

circumstances.  

 As a final note about the density measurements, corrections could, in principle, be made to correct for the intensity 

variations in the Rayleigh scattering measurements (and potentially the FLEET intensity measurements if a 

sufficiently robust model of the intensity dependence is established). For example, the shot-to-shot intensity variations 

could be measured with a photodiode, and subsequently a scaling factor applied to correct the image. Such a correction 

might improve the measurement precision by a factor of two or more. Furthermore, relative density measurements 

could still be made with a higher degree of precision. If the FLEET or Rayleigh scattering were done along a line or 

plane (rather than a point or integrated measurement, as presented here), the same intensity fluctuations are 

experienced everywhere in the image. Thus, if the density is known to a high degree of precision at one place along 

the line or plane, the single-shot measurements would likely exhibit far less variability than the uncorrected ensembles 

in the present studies. 

 

2. Static Temperature 

There are numerous means of numerically calculating the static temperature of the flow based on the decay rate 

models in Section IV.B. For example, one of the density measurements from Section IV.C.1 could be used in 

conjunction with Eq. 7 to evaluate the temperature. Alternatively, one of the two decay rates could be used along with 

a measured density and an appropriate equation of state (Beattie-Bridgeman EOS in this case) to evaluate the 

temperature and pressure simultaneously through Eq. 6 (discussed in Appendix B). The temperature measurements 

made in this manner are presented in Fig. 20a. Despite the various numerical pathways leading to these measurements, 

each ultimately suffers from the same limitation. The FLEET signal decay rates are strong functions of the density 

while exhibiting only weak orthogonal dependence on the temperature. For a perfect density measurement (100 

percent accuracy and 0 precision) and perfect model, this wouldn’t be a limiting factor. However, the low (10 percent) 

precision of the density measurements combined with the moderate accuracy completely overshadow the weak 

temperature sensitivity. As a result, the temperature distributions calculated at each set of conditions are nearly 

uniform, yielding little but fortuitous accuracy to the true temperature. Consequently, as a direct measurement of 

temperature, the current FLEET data is insufficient. 

However, the FLEET data enable an alternative means of measuring the temperature. Along with the density 

information that the signal intensity and lifetimes yield, FLEET is simultaneously measuring the velocity. As a result, 

with only weak assumptions, an accurate measurement of the temperature can be made indirectly. One way of making 

this measurement is to assume that the total temperature (or less strongly that the total enthalpy) of the flow is constant. 

Doing so, the temperature can be expressed as: 

 
𝑇 = 𝑇𝑡 +

1

2

‖𝑢‖2

𝑐𝑝(𝜌, 𝑇)
 (8.1) 

 
ℎ(𝜌, 𝑇) = ℎ𝑡(𝜌𝑡 , 𝑇𝑡) −

1

2
||𝑢||

2
 (8.2) 
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The density used in these calculations were taken from the dual decay empirical fit, while the ||𝑢|| term is the absolute 

magnitude of the velocity vector. The results for the calculations using the isenthalpic assumption are shown in Fig. 

20b. The temperatures measured in this way are found to be in agreement with the facility DAS. In this case, the mean 

standard error across all conditions is 0.62 percent, while the mean precision is found to be 0.26 percent. A comparison 

between the two temperature measurements presented here is given in Table 4.   

  

Table 4: Comparison of different methods for calculating static temperature. 

Method 𝑇𝑡 range [K] 𝜀 [%] 𝜎𝑇/𝑇 (mean) [%] 𝜎𝑇/𝑇 (min) [%] 𝜎𝑇/𝑇 (max) [%] 

𝛾𝐸𝐹 + EOS + 𝜌 100 – 300 40.4 28.9 16.9 54.9 

(ℎ𝑡 = 𝑐𝑜𝑛𝑠𝑡. ) + 𝜌 + 𝑢 100 – 300 0.62 0.26 0.03 2.46 

 

 In evaluating the temperatures measured using the constant total enthalpy assumption, it is important to understand 

that, first, the accuracy and precision are results primarily of the accuracy and precision of the velocity measurements. 

The specific heat of the gas is a weak function of the density, and so the comparatively large error and precision of 

the density measurement do not have a drastic influence on the resulting temperature measurement. Second, the 

assumption of constant total enthalpy requires an independent measurement of the total conditions (temperature and 

density/pressure) for calibration. In this case, the facility DAS provided the additionally necessary data, as most 

facilities could. However, this action makes the measurement more dependent on the facility DAS measurements, 

which, if they are the quantity in question, undermines the utility of the measurements in some capacity. Furthermore, 

while not a particularly strong assumption, it is quite simple to invalidate the assumption of constant total enthalpy. 

For instance, having a test section with slotted walls (with gas being exchanged between the plenum and test section) 

or injecting a gas of differing enthalpy quickly makes these temperature measurements dubious. Operating the facility 

while thermodynamic conditions are changing could also invalidate this assumption in certain circumstances. 

Furthermore, particular classes of flows (shear flows, for example) also have viscous heating and thermal diffusion, 

which are not directly accounted for in this assumption. However, important types of flows in the transonic regime 

would still permit these velocity measurements. For example shockwaves present on transonic bodies could be 

assessed for changes in temperature and velocity. The measurement of temperatures above bodies with a large degree 

of curvature, such at airfoils at high angles of attack, could be made provided the measurements were made in the 

primarily inviscid regions of the flow. Thus, there is still value in assessing the measurements made in this fashion. 

 These limitations aside, accurate measurements of the temperature were possible using the FLEET data. For 

comparison, the temperature measurements by made using high-resolution 𝑁2 CARS in an underexpanded jet by 

Woodmansee et al. were found to have high accuracy (when compared to CFD) and precisions as low as 5 K or 

approximately 2.5 percent of the measured temperature.29 Previous temperature measurements using FLEET, which 

based the thermometry on the fitting of rotational spectra in the ultraviolet portion of the emission, found uncertainties 

 
Figure 20. Comparison of temperature measurements with those by the facility DAS. a) Direct measurement 

and b) measurement assuming constant total enthalpy (error bars are present but hidden by the data points). 
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between 20 and 50 K for high-temperature measurements, though there was an overall bias to the measurements due 

to the localized heating of the gas by the femtosecond laser pulse. Simultaneous temperature and pressure 

measurements by Kearney and Danehy, which utilized hybrid femtosecond/picosecond CARS at elevated pressures, 

were found to exhibit marked accuracy in temperature, within 1 percent, along with precision ranging from 0.7 to 1.4 

percent.30 Filtered Rayleigh scattering (FRS) measurements made by Forkey et al. showed a temperature measurement 

uncertainty of approximately 3 K or 2 percent at standard to slightly elevated pressures.27 Mielke et al. found lower-

bound temperature uncertainties of 58 K or approximately 20 percent with interferometric Rayleigh scattering 

measurements, though higher accuracy was claimed in RMS fluctuation measurements using noise-floor subtraction.31 

Finally, very precise measurements of temperature were made through laser-induced thermal acoustics (LITA) by 

Hart et al., which showed temperature precisions within 0.3 percent and accuracies within 0.5 percent.32 The 

measurements made with FLEET thus compare to or exceed the measurements previously made with similar and 

related techniques, with the caveat of needing a reference measurement for proper calibration. 

  

3. Static Pressure 

Direct measurement of the static pressure from the FLEET signal intensity/decay rate faces the same limitations 

as that of the static temperature; the decay rates are almost exclusively functions of the density. Consequently, the 

sensitivity to temperature and thusly the pressure is limited. Despite numerous pathways through to the measurement 

of pressure, the results are not particularly encouraging. The results of one such method, calculated simultaneously 

with the direct temperature measurement described above and in Appendix B, are shown in Fig. 21a. Much like the 

related temperature measurement, the single-shot pressures calculated in this fashion suffer from broad probability 

distributions and inaccurate means.  

The same alternative route is available for the static pressure as for the temperature; by assuming a constant total 

enthalpy and using the single-shot velocity measurements to evaluate the temperature, the static pressure can be 

calculated with an experimentally determined density measurement (FLEET or otherwise) and using an equation of 

state (Beattie-Bridgeman equation in these studies). Since the thermodynamic state of the gas can be defined through 

any two state variables (for non-reacting flows), the final condition (in this case pressure) is uniquely determined 

through the EOS. The results of these calculations are shown in Fig. 21b, based on the density measurements made 

with a power-law fit to the FLEET signal lifetime (to cover the entire temperature range). The pressures measured in 

this fashion are far more representative of those measured by the facility DAS than those depicted in Fig. 21a. The 

mean standard error is, on average, approximately 6 percent, while the mean precision is 10.7 percent. Not 

surprisingly, these figures are very similar to the accuracy and precision of the density measurement that the data on 

which it is based. A comparison of these two measurement methods is given by Table 5. 

Pressure measurements with similar or higher accuracy and precision are fairly common throughout the literature. 

The high-resolution 𝑁2 CARS by Woodmansee et al. found that the accuracy of their pressure measurement varied 

depending on the pressure itself. Notably, at sub-atmospheric pressures, the CARS measurements typically over-

 
Figure 21. Comparison of static pressure measurements with those measured by the facility DAS. a) Direct 

measurement using FLEET thermodynamic models and b) measurement assuming a constant total enthalpy. 
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predicted the pressure, while under-predicting at higher pressures. Overall, a systematic bias of 4 percent was present 

at the pressure range applicable to these studies.29 Gross et al., using a nitric oxide LIF-based technique, were able to 

make pressure measurements with a precision as high as 2 percent, attributed mostly to instrumental noise levels.26 

The accuracy of hybrid femtosecond/picosecond cars by Kearney and Danehy were found to be as high as 2 percent, 

though there was a strong dependence on the measurement probe delay time. The precision of these same 

measurements was found to be a function the absolute pressure being measured in addition to the same probe delay 

time to which the accuracy was sensitive.30 Pressure measurements by Hart et al. using LITA in a supersonic wind 

tunnel reported approximately 4 percent across all measured pressures, though these measurements were all at greatly 

reduced pressures.33 Finally, the FRS measurements by Forkey et al. showed a total measurement uncertainty between 

4 and 5 percent at ambient to slightly elevated pressures.27  

While the present ability to measure pressure with the FLEET technique still lags behind some of the above 

examples, this demonstration of the measurement ability is still encouraging. It must be stated that much as the 

temperature measurements based on the isenthalpic assumption suffer from physical limitations, the pressure 

measurement lacks utility in the same fashion. That is, shear flows, injectant flows, and non-adiabatic flows cannot 

be evaluated without caveat. However, one relevant flow scenario that is not invalidated through this assumption are 

flows with shockwaves. For example, the thermodynamic and velocity fields could be mapped out in the inviscid 

region over a transonic airfoil with a shock situated at some position on the chord. With the current level of precision 

and accuracy, the minimum threshold for measuring changes in conditions across a shock is a local Mach number of 

approximately 1.05. Thus, though there are certain limitations placed on the validity of the measurements, the ability 

of FLEET to make off-body measurements of interest is still quite encouraging. 

 

Table 5: Comparison of different methods for calculating static pressure. 

Method 𝑇𝑡 range [K] 𝜀 [%] 𝜎𝑃/𝑃 (mean) [%] 𝜎𝑃/𝑃 (min) [%] 𝜎𝑃/𝑃 (max) [%] 

𝛾𝐸𝐹 + EOS 100 – 300 44.3 27.2 15.5 46.7 

(ℎ𝑡 = 𝑐𝑜𝑛𝑠𝑡. ) + EOS 100 – 300 6.20 10.7 6.13 20.6 

 

D. Discussion 

All of the measurements, modeling, and analysis in the previous sections are meant to outline a methodology that 

could make possible the measurement of thermodynamic conditions with FLEET and RS data. Previously, FLEET 

has not thoroughly been evaluated for its ability to measure thermodynamic conditions in a large-scale facility or at 

the conditions observed in these studies (high pressure, low temperature). It was thus unclear whether the technique 

could serve as a clear metric of any quantity other than velocity in this context. However, it has now been demonstrated 

that the density could be measured with reasonable accuracy and precision using the FLEET signal alone or by using 

the Rayleigh scattering signal. These measurements do require a few data points for calibration, but are able to 

maintain their integrity without further assumption.  

As was demonstrated, the direct measurement of the other thermodynamic quantities proved difficult. The 

fundamental reason for this occurrence was the lack of temperature sensitivity in the FLEET signal lifetimes. As a 

result, the imprecision and inaccuracy of the density measurements lead to much larger discrepancies in the associated 

temperature measurement. Thus, at face value, only a density measurement could be reasonable extracted from these 

data without further information. However, making the assumption of constant total enthalpy is not unreasonable for 

many situations in this type of facility. Operationally, before data are collected, the facilities are run at the desired test 

conditions to assure that the models and walls of the test section come into thermal equilibrium with the gas in the test 

section. Consequently, it is not an unreasonable assumption to make when measuring freestream conditions. However, 

when a slotted test section is involved, or if secondary injection of gases is being conducted, its validity is diminished. 

Another possible way forward with temperature measurement is the spectral measurement of the FLEET signal. As 

was noted above, the attempts at making temperature measurements in this way have contained measurement bias due 

to the localized heating of the gas by the absorption of the laser pulse (up to several hundred K). A new variant of 

FLEET, selective two-photon absorptive resonance FLEET (STARFLEET),34 shows promise at avoiding this issue 

by depositing substantially less (orders of magnitude) energy into the gas. Indeed, the preliminary spectral 

measurements indicated a local temperature rise of only 10 to 20 K in these studies. 

An important point that has not been mentioned yet is the experimental simplicity of using these techniques. Both 

FLEET and RS are single laser, single camera techniques, do not require spectral dispersion of the signals or tuning 

of their laser source (or multiple laser sources), and have relatively straightforward (though time consuming) data 

processing. Throughout the results, comparisons with techniques such as CARS, LITA, and filtered or interferometric 

Rayleigh scattering were given to keep the measurements made in context. However, these techniques pose 
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significantly greater experimental challenges in TCT-type facilities. Thus, even if superior measurements were 

possible in lab environments, it is highly questionable whether such improvements would translate over to operating 

in large-scale facilities. Overall, the results of these studies were very encouraging. Off-body measurements of both 

velocity and thermodynamic condition were made, whether directly or indirectly. A summary of the results for the 

different measurements elaborated in this paper are given by Table 6. Further studies are necessary to validate these 

trends and assess whether the framework heretofore outlined could be further refined. 

 

Table 6: Summary of Highest Measurement Accuracy and Precision for different quantities 

Quantity 𝑇𝑡 domain [K] 𝑃𝑡 domain [kPa] 𝜀 [%] 𝜎𝑛/𝑛 [%] 

Velocity 100 – 300  100 – 400  1.48 0.73 

Density (FLEET, PLF) 100 – 300  100 – 400  6.62 12.3 

Density (RS) 215 – 300  100 – 400  3.55 10.2 

Temperature 100 – 300  100 – 400  0.62 0.26 

Pressure 100 – 300  100 – 400  6.20 10.7 

 

V. Conclusions 

Femtosecond laser electronic excitation and tagging (FLEET) and molecular Rayleigh scattering were studied for 

their thermodynamic dependencies in the NASA Langley 0.3-m TCT facility. The intensity of the FLEET and 

Rayleigh scattering signals were found to be directly proportional to the gas density in which they were induced, while 

the lifetime and decay rate of the FLEET signal was found to have a strong density dependence and a mild temperature 

dependence. These behaviors were used to construct physical and empirical models of the behavior of the technique. 

Subsequently, these model equations were used to measure the conditions within the tunnel freestream. Density, 

temperature, and pressure were measured by FLEET with accuracies of approximately 7 percent, 0.6 percent, and 6 

percent, respectively. The precision of these measurements were similarly diverse: the density precision were roughly 

10 percent, temperature approximately 0.3 percent, and pressure 11 percent. Density measurements using Rayleigh 

scattering showed a slightly higher accuracy of 3.5 percent and similar precision. These measurements indicate that 

both FLEET and Rayleigh scattering could potentially serve as thermodynamic measurement techniques for 

evaluating and assessing freestream flow conditions as well as certain transonic flows of interest. 

 

Appendices 

A. Linearity of high-speed CMOS camera 

 

One crucial aspect in evaluating the thermodynamic dependences of the FLEET signal intensity and lifetime is the 

linearity of the high-speed CMOS camera. That is, it is implicitly assumed that the camera responds in a controlled 

and repeatable fashion to varying levels of signal intensity. The manufacturers provided no linearity specification for 

the camera used in these studies, and so its behavior had to be characterized over the full range of intensities. 

Methodologically, this was achieved by observing the FLEET signal at different intensities. First, the gain on the 

image intensifier was gradually increased such that the FLEET signal just barely saturated the CMOS sensor. A series 

of images were then captured at each of the aperture settings on the collection lens (𝑓/2, 𝑓/2.8 , 𝑓/4, 𝑓/5.6, 𝑓/8, 𝑓/
11, and 𝑓/16). Several sets like this were then taken at different intensifier gains. The peak intensities of the means 

of these sets were then compared to the relative aperture settings, allowing for the camera response to be evaluated as 

a function of the incident intensity. The results of these studies are shown in Fig A.1. 

 It is seen that camera’s overall signal response was linear with respect to the intensity of the incident intensity. 

The maximum observed mean intensity was approximately 3300 counts out of 4095. Though the instantaneous signals 

often were near saturation, the degree of variability in the FLEET signal made setting the gain at the top end quite 

difficult, and to prevent saturation biasing at this intensity, the gain was kept lower. Nonetheless, the linear trend was 

quite consistent. The curves corresponding to different gains are all in roughly the same proportion to each other, 

indicating that the linearity was consistent over the full well of the sensor (note that a 1 percent change in gain 

corresponds to approximately a 15 percent change in signal). The only exception to this trend was near the noise floor 

of the camera, which was approximately 20 counts RMS at the time and settings used during these studies. Since no 

signal could be distinguished from the background at these intensities, it was not possible to establish linearity below 
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this threshold. Nonetheless, over the ranges of signals collected for these studies, the combined effect of the intesnifer 

and camera  responded linearly. 

 

 
Figure A.1. Linearity data for high-speed CMOS sensor. 

 

B. Density and Temperature measurement methodologies 

This appendix details the different methodologies used in evaluating thermodynamic conditions using the models 

constructed in Section IV.B. 

 

1. Static Density 

The density could be evaluated in many different ways based on the model equations in Section IV.B. The density 

calculations based on the FLEET and Rayleigh scattering signal intensities were very straightforward; the model 

equation (Eq. 4) was rearranged minorly to directly yield the density from the measured intensity: 

 𝜌𝐹𝐿𝐸𝐸𝑇,𝑅𝑆 = 𝜌0
𝐼

𝐼0
 (B.1) 

Thus, the calculation of density from either the FLEET signal intensity or the Rayleigh scattering signal intensity was 

a direct substitution based on the model equation. 

 Calculating the density based on the FLEET signal decay rates were more complicated. The first approach, based 

on the power-law fit, was a similarly direct substitution based on Eq. 5: 

 𝜌𝑃𝐿𝐹 = 𝜌0 (𝐶1 (
𝛾

𝛾0
)
−𝐶2

+ 𝐶3) (B.2) 

In the actual data presented in Section IV.C.1, a density was calculated based on each decay rate (𝛾1 and 𝛾2), and then 

the mean of these two values were given.  

 The final method presented in Section IV.C.1, termed the ‘dual decay empirical fit,’ was based on Eq. 7. Since the 

two empirical decay rates are known for every data point, there is a unique density and temperature combination, 

which will give rise to the data. Thus, by justly assuming that 𝑇/𝑇0 is the same independent of which decay rate the 

fit applies to, the density can be measured by rearranging Eq. 7 with respect to 𝑇/𝑇0 for each of the decay rates, then 

setting them equal to one another. The resulting density can be expressed as: 
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 𝜌𝐸𝐹 = 𝜌0

(

 
 
 
 
 
 

𝛾2 − 𝐷1,2

𝐷2,2((
𝛾1 − 𝐷1,1
𝐷2,1

) (
𝛾2 − 𝐷1,2
𝐷2,2

)

−𝐷3,1
𝐷3,2
⁄

)

1

𝐷4,1+𝐷4,2
𝐷3,1
𝐷3,2

)

 
 
 
 
 
 

1
𝐷3,2

 (B.3) 

Here, the first subscript on the coefficients represents which term in Eq. 7 the parameter refers to while the second 

subscript represents whether it corresponds to 𝛾1 (1) or 𝛾2 (2). The reason this method works is because the 

thermodynamic dependencies of each model equation are sufficiently distinct to provide the necessary sensitivity to 

the measured decay rate. 

  

2. Static Temperature 

Much like the density, numerous paths exist for calculating the temperature from the measured quantities. 

However, only the two presented methods will be discussed in detail. The first method, which was based on Eq. 6, 

required an independent density measurement. While this could have come from any of the four presented methods 

discussed in the preceding section, the power-law fit method was selected for its (slightly) higher precision and ability 

to operate over the full range of tunnel conditions. The temperature and the pressure were then solved for 

simultaneously in iterative fashion. To achieve this, the temperature and pressure were first confined to vary in such 

a way as to be consistent with the Beattie-Bridgeman equation of state. The density measurement acted as the anchor 

to ensure that the measurement was physically consistent; if a temperature was defined, the pressure was automatically 

defined as well. Then Eq. 6 was evaluated for both decay rates, and the residual with each decay rate was calculated. 

The temperature was then varied, and a selection was made to minimize the collective residual between both of the 

measured decay rates and the predicted decay rates. The problem with this method was that it required a much higher 

level of precision (and possibly accuracy) in the density measurement to make it viable; the decay rates are very 

sensitive to changes in density compared to the temperature. 

The second method utilized the assumption of a constant total enthalpy and an independent density measurement. 

Technically it also requires that the composition of the flow be constant as well, but since the tests were conducted in 

a pure nitrogen flow, this assumption wasn’t considered relevant. These assumptions then directly relate the thermal 

and velocity fields through Eq. 8.2. The FLEET velocimetry is able to measure two components of velocity in the 

current setup; the magnitude of this velocity is considered to be the ||𝑢|| term in the same equation. The total enthalpy 

is then calculated through standard NIST relations for molecular nitrogen using the facility DAS measurements of 

total temperature and total density.35 Finally, using the independent density and velocity data, the static temperature 

was iterated on until convergence was achieved, which was specified to be within 10-8 K. 

 

3. Static Pressure 

 The results presented in Section IV.C.3 utilize two different methods for evaluating the static pressure of the gas. 

The first method was described in the preceding section, where the temperature and pressure were solved for 

simultaneously. The second method utilized the temperature measurement based on the velocity and density 

measurements; the temperature and density were directly substituted into the Beattie-Bridgeman equation of state to 

yield the static pressure. Ensembles of single-shot measurements were then populated for later analysis. 
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