

Driving Factors for Achieving Safe, High Performing Li-ion Battery Designs

By Matthew Keyser, NREL and Eric Darcy, NASA-JSC

More Electric Aircraft USA Seattle, WA, USA August 29-30, 2016

www.nasa.gov

00

5 Design Driving Factors for Reducing Hazard Severity from a Single <u>Cell TR</u>

Reduce risk of cell can side wall ruptures

 Without structural support most high energy density (>600 Wh/L) designs are very likely to experience side wall ruptures during TR

Provide adequate cell spacing

- Direct contact between cells without alternate heat dissipation paths nearly assures propagation
- Individually fuse parallel cells
 - TR cell becomes an external short to adjacent parallel cells and heats them up
- Protect the adjacent cells from the hot TR cell ejecta (solids, liquids, and gases)
 - TR ejecta is electrically conductive and can cause circulating currents
- Prevent flames and sparks from exiting the battery enclosure
 - Provide tortuous path for the TR ejecta before hitting battery vent ports equipped flame arresting screens

Current Spacesuit Battery Design

Compliance with the 5 rules

- Minimize side wall ruptures
- No direct cell-cell contact
- Individually fusing cell in parallel
- Protecting adjacent cells from TR ejecta
- Include flame arresting vent X ports

X

Solid Al side panels

Design Propagates TR – Catastrophic Hazard

No place for the cell TR effluent to vent

Safer, Higher Performing Battery Design

Compliance with the 5 rules

- Minimize side wall ruptures
 - Al interstitial heat sink
- No direct cell-cell contact
 - 0.5mm cell spacing, mica paper sleeves on each cell
- Individually fusing cell in parallel
 - 12A fusible link
- Protecting adjacent cells from TR
 ejecta
 - Ceramic bushing lining cell vent opening in G10 capture plate
- Include flame arresting vent ports
 - Tortious path with flame
 arresting screens
 - Battery vent ports lined with steel screens

Features

- 65 LG (INR18650 MJ1) 3.5Ah cells (13P-5S)
- 37Ah and 686 Wh at BOL (in 16-20.5V window)
- Cell design likely to side wall rupture, but supported

No corner cells - Every cell has at least 3 adjacent cells

0.5mm cell spacing, AI 6061T6

- 13P-5S Configuration with 3.5 Ah LG INR MJ1 cells. 37 Ah at 3.8 A mission rate.
- Aluminum interstitial heat sink, 0.5 mm spacing between cells
- Mica sleeves around shrink wrap, 2 FT
- The G10 capture plate houses the + and - ends of the cells and prevents the Ni bussing from shorting to the heat sinks.
- The ceramic Macor bushing acts as a chimney to direct ejecta outwards and protect the G10/FR4 capture plate

Cell Brick Assembly > 180 Wh/kg

Mass Categories	g	%
LG MJ1 Cells	3012.75	71.3%
Heat sinks	824.95	19.5%
Mica sleeves	182.31	4.3%
Capture plates	115.81	2.7%
Ceramic bushings	60.15	1.4%
Ni-201 bussing	29.71	0.7%
Total	4225.7	

- With 12.41 Wh/cell, cell brick assembly achieves 191 Wh/kg
 - Assuming 12.41Wh per cell
- Design has 1.4 parasitic mass factor
 - Cell mass x 1.4 = Brick mass

Mass Distribution

Attempts to Drive TR with Cell Bottom Heater Fails

NREL/NASA ISC Device Design

Cathode Active layer Active anode to cathode collector short

Cathode Current Collector Cathode Active layer Aluminum ISC Pad 76 micron Wax layer ~20 microns	
Cu Puck 25 microns Anode Active Layer ^{Copper ISC Pad 25 microns}	
Anode Active Layer	
ISC Device in 2.4Ah cell design	
^{5 mm} Tomography credits: University College of London	

Graphic credits: NREL

Top to Bottom: 1. Copper Pad 2. Battery Separator with Copper Puck 3. Wax – Phase Change Material 4. Aluminum Pad 2010 Inventors:

- Matthew Keyser, Dirk Long, and Ahmad Pesaran at NREL
- Eric Darcy at NASA

US Patent # 9,142,829

Wax formulation used melts ~57°C

Thin (10-20 μm) wax layer is spin coated on Al foil pad

Open air test with cell charged to 4.2V and with TCs welded to cell side wall (2) and bottom (1)

High Speed 2D X-ray Video of ISC Device

Stages of thermal runaway progression with the ISC device resulting in (left) nominal venting and (right) ejection of JR

Nominal venting (left) and JR ejection (right)

Finegan, D, et. al., "Understanding Battery Failure: A Multi-Scale and High-Speed X-ray CT Approach" Poster #250, IMLB 2016, Chicago, IL

Heater power ~42W for 180s. Onset of TR (OTR) occurs 180s after power on and coincides with trigger bank OCV dip. Adjacent cell1 has $\Delta T = 58.9^{\circ}C$ to max of 92.0°C, while adjacent cells 2 & 3 have $\Delta T = 48^{\circ}C$ to max of 76.0°C

No TR Propagation, Only Smoke Exits Battery

Mesh 40 & 30 steel screens arrest flames and sparks

However, trigger cell was only 2.4Ah cell

16

onset temperatures of 39°C, 37°C, and 38°C for $\Delta T = 94$ °C, 77°C, and 78°C, respectively.

- We will test if the box can hold pressure with an air test before we do battery test
- New boxes with slightly increased void volume and wall thickness are in

Gore Vent Testing

Maximum Pressure Seen Inside the Box

18

No TR Propagation – Only Clean Smoke Exits Battery

LG MJ1 ISC device trigger cell (3.5Ah)

Gore fabric Vent design

LG 3.5Ah MJ1 cell with ISC device in 3rd JR wind

3.5 Ah Trigger Cell Experienced a Side Wall Rupture

Trigger cell was a struggle to extract from heat sink. The mica insulation was severely damaged adjacent to rupture

Cell	OCV (V)	Mass (g)
Trigger	0	17.161
1	3.474	46.801
2	0.336	46.691
3	0	46.671

Trigger

20

Zircar RS-200 Refractory Material

- Can it withstand a side wall rupture?
 - Replace the G10/FR4 capture plate and Macor® ceramic bushings with a redesigned RS-200 capture plate
 - Downside is that its harder to machine and not as strong

Capture Plate #1

Investigation of Bottom Vent Cell Designs

This feature could greatly reduce the risk of side wall rupture during thermal runaway

Summary Findings

- ISC device enables critical battery safety verification
 - With the aluminum interstitial heat sink between the cells, normal trigger cells can't be driven into TR without excessive temperature bias of adjacent cells
 - With an implantable, on-demand ISC device, TR tests show that the conductive heat sinks protected adjacent cells from propagation
 - Very well protected (max T < 92°C) with a 2.4Ah cell design
 - Marginally protected (max T < 133°C) with a 3.5Ah cell design
 - Interior cells are more protected than edge or corner cells
 - High heat dissipation and structural support of AI heat sinks show high promise for safer, higher performing batteries
 - Battery brick design achieving > 190Wh/kg demonstrated to be safe
 - Battery design that doesn't emit flames or sparks achieves > 160 Wh/kg
 - Future work
 - Moving to a cell design with bottom vent to reduce side wall rupture risk
 - Refractory material for the capture plate to better protect adjacent cells from TR ejecta
- Acknowledgements
 - M. Shoesmith, E-one Moli Energy for successfully implantation of ISC device in their 2.4Ah cell design
 - J.Y. Park, LG Chem for successfully implantation of ISC device in their 3.5Ah cell design