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Introduction 

• Turbulent heat flux 

– Defined by velocity-temperature (or enthalpy) correlation 

terms that appear in the RANS energy equation. 

 

 

– Often represented using an eddy diffusivity approach: 

 

 

 

• Turbulent Prandtl number 

– Defined as the ratio of the turbulent eddy viscosity to thermal 

diffusivity: 
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Motivation 

• Turbulent Prandtl number variation 

– Nominally 0.9 in boundary layers, higher near the wall. 

– As low as 0.5 in free shear layers. 

– In general, it varies throughout the flow field. 

• Simulation sensitivity to the choice of constant Prt  

– Wall heat transfer problems. 

– Combustion applications. 

– Thermal decay of heated jets. 

• Jet noise 

– Differences observed in noise levels between cold and hot 

jets. 

– Additional acoustic analogy model source term related to the 

thermal variance. 

4 



National Aeronautics and Space Administration 

www.nasa.gov 

Model Formulations 

• Constant Prt. 

• 0-Eq (algebraic) expression for 𝜌 𝛼𝑇. 

• 2-Eq thermal variance (𝜃2) & dissipation rate (𝜖𝜃) 

transport models, which then provide 𝜌 𝛼𝑇. 

• Scalar flux (𝜌𝑢𝑗
′′ℎ′′) transport models. 

• Direct statistical output from LES/DNS. 
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0-Eq Models 

• WC:  Wassel & Catton (1973) 

 

 

 

• KC:  Kays & Crawford (1993) 
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2-Eq Models 
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2-Eq Models 

• Turbulent velocity timescale  𝜏𝑢 = 𝑘/𝜖 

• Turbulent thermal timescale  𝜏𝜃 = 𝜃2/2𝜖𝜃 

• Turbulent timescale ratio  𝑅 = 𝜏𝜃/𝜏𝑢 
 

• Mixed timescale    𝜏𝑚 = 𝜏𝑢
𝑙 𝜏𝜃

𝑚 

– Geometric Average 

 𝜏𝑚 = 𝜏𝑢𝜏𝜃 = 𝜏𝑢 2𝑅 

– Harmonic Average 

 𝜏𝑚 =
2

1 𝜏𝑢 +0.5 𝜏𝜃 
=

𝜏𝑢2𝑅

𝑅+0.5
 

– Nagano, Tagawa, Tsuji (1991) 

 𝜏𝑚 =
𝜏𝜃
2

𝜏𝑢
= 𝜏𝑢 2𝑅 2 
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2-Eq Models 

• Four models examined: 

– AKN:   Abe, Kondoh, & Nagano (1995) 

– DWX:  Deng, Wu, & Xi (2000) 

– SSZ:   Sommer, So, & Zhang (1993) 

– BCD:   Brinckman, Calhoon, & Dash (2007) 
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Results 
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Heated Boundary Layer 

• Constant wall temperature applied from leading edge. 

– Thermal & momentum boundary layers develop together. 

 

 

 

 

• Blackwell, Kays, & Moffat (1972) 

– U=9.65 m/s, ΔT=14 K 

• Gibson, et al (1982,1984) 

– U=22.3 m/s, ΔT=14 K 

• Subramanian & Antonia (1981) 

– U=8.44 m/s, ΔT=14 K 
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Heated Boundary Layer 

Skin Friction Heat Transfer 
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Heated Boundary Layer 

Heat Transfer 
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Heated Boundary Layer Profiles 

Velocity Temperature 
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Heated Boundary Layer Profiles 

Temperature 

15 



National Aeronautics and Space Administration 

www.nasa.gov 

Heated Boundary Layer Profiles 

Turbulent Prandtl Number Temperature Variance 
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Heated Pipe Flow 

• Configuration of Hishida & Nagano (1978) 

– Upstream section is adiabatic, velocity fully developed. 

– Downstream section is isothermal. 

 

 

 

 

 

 

• Data from Sato, Nagano, & Tagawa (1992) 

– Re=40,000 

– U=17 m/s 

– ΔT=74 K 
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adiabatic isothermal 

x/D=-127 x/D=0 x/D=45 
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Heated Pipe Flow Profiles 
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Temperature 
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Heated Pipe Flow Profile 

 

Turbulent Prandtl Number 
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Heated Pipe Flow Profiles 

Temperature Variance Turbulent Heat Flux 
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Heated Jets 

• Lockwood & Moneib (1980) Pipe Exhaust 

– Velocity profile fully developed, flat temperature. 

– Re=50,000 

– Mj=0.25 

– Uj=117 m/s 

– ΔT=255 K 

– Tj/T∞=1.86 

• Mielke, et al. (2008) Convergent Nozzle Exhaust 

– Re=200,000 

– Mj=0.37 

– Uj=167 m/s 

– ΔT=215 K 

– Tj/T∞=1.76 
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Heated Jet Centerline Temperature 

Pipe Exhaust Nozzle Exhaust 
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Heated Jet Centerline Temperature Variance 

Pipe Exhaust Nozzle Exhaust 
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Heated Jet Centerline Temperature Variance 

Pipe Exhaust Nozzle Exhaust 
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Which data is right? 

25 

• George (1989) theorizes that differences in turbulent 

structure affect the scalar field. 

• Mi (2001) experiment demonstrates the difference at like 

conditions. 
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Conclusions 

• Constant Prt 

– Crude approximation for boundary layer. 

– Can match the slope of the log-layer temperature profile, but 

not the offset. 

• 0-Eq models 

– Best predict the increase in the near-wall Prt and log-law 

temperature profiles, but formulations are not very general. 

– Do not provide Trms. 

– Are effectively the same as constant Prt in free shear flows. 

• 2-Eq AKN & DWX models 

– Under predict near-wall Prt and log-layer mean temperature. 

– Provide good agreement with near-wall Trms data. 

– Predict higher values of Trms in jets.   

• AKN is >10x larger, perhaps due to choice of mixed timescale. 
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Conclusions 

• 2-Eq SSZ & BCD models 

– Provided unreliable results for wall-bounded flow, perhaps 

due to near-wall source term implementation.   

– Provide good Trms values for Lockwood jet case. 

– BCD model better predicts mean temperature. 

• Outstanding issues with jet predictions 

– For low-Mach jets, Prt has little effect on velocity. 

• Cannot explain differences in potential core length for 

heated/unheated jets. 

– 2-Eq results for pipe and nozzle exhausts are very similar, 

but data suggests significant differences in Trms. 

• If this is due to differences in turbulent structures at the jet exit, 

then RANS models may be hopeless. 
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