

Flight Analysis of an Autonomously Navigated Experimental Lander

Jeffrey Chin, Justin Niehaus, Debra Goodenow

NASA Glenn Research Center

Storm Dunker, David Montague

Airborne Systems

Flight Objectives

Increase the reusability of high altitude balloon gondolas after landing

Goals		Objectives	
1.0	Demonstrate a method to reduce damage to the gondola during landing	1.1	Launch and land a gondola using damage reduction method
		1.2	Collect and retrieve load data during the operation of the damage reduction method
2.0	Demonstrate a method to increase recoverability of the gondola after landing	2.1	Perform a controlled landing of a gondola to a specified target region

NASAFly System

- Developed by Airborne Systems
- Guided Precision Aerial Delivery

New Challenges

- Textile tolerance to radiation exposure
- Operating systems at combined low densities and temperatures
- Safely, reliably, and cleanly separating from the host vehicle and initiating drogue inflation
- Stability during a transonic free-fall
- Use of GPS sensors near their altitude and speed limits
- Mission planning for balloon flights with highly variable trajectories

ANGEL Payload

Balloon Flight System (BFS)

- Monitors flight and landing conditions
- Sensors include:
 - GPS
 - 3-axis Accelerometers
 - 3-axis Gyro
 - 3-axis Magnetometer
 - Thermocouples
 - Barometers
 - Cameras
 - Current/voltage Monitoring
 - Telemetry

Separation System Design

Separation System – Section View

Separation System – Section View

Separation and Descent

41.5 minute descent from 108,000 ft. 360 mph max speed during drogue fall

Successfully maintained:

- √ Temperature above 10 Celsius
- ✓ 7-10 satellite GPS lock
- ✓ Clean separation and drogue
- ✓ Stable Subsonic Fall
- ✓ Telemetry though out descent

Deployment Loads

Acceleration, g's

	Snatch	Inflation
Raw	20.93	4.99
0.025s Average	13.33	4.87
0.05 Dwell	9.26	4.45

Flight Path

Final Flight Path

ANGEL landed 3,113 meters from the Impact Point (~1.93 miles)

Impact

Impact Loads

Lessons Learned

- Use low elastic material, such as Kevlar, as attenuation against drogue rebound and lengthen as far as necessary, consider adding a cutter after drogue apex
- Sew stiffener material into the drogue bridle to help it remain straight during initial separation transient
- Minimize loose linkages along the parachute load path to minimize deployment shock, incorporate a confluence to reduce coupling between payload and canopy yaw
- Pre-program numerous acceptable impact points to protect against highly variable flight trajectory
- Make deployment altitude autonomously adjustable to compensate for wind and trajectory drift
- Incorporate a range finder to supplement altitude information for off-nominal landing flaring operation

Thank you!

Questions?

