

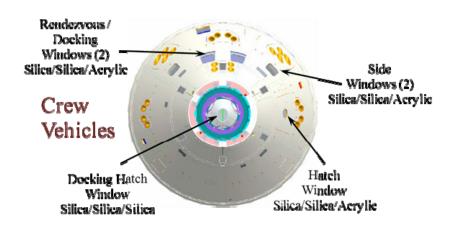
Fused Silica and Other Transparent Window Materials

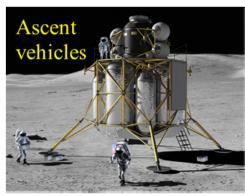
Jon Salem

NASA Glenn Research Center

Cleveland, Ohio

ICACC, Daytona Beach, January 27th, 2016




Outline

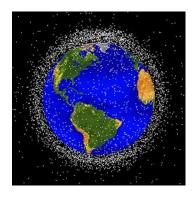
- Window Applications and Requirements
- Historical Material
- New Materials and Mechanical Properties
- □ ISS Windows and Damage
- Anomalous Behavior of Silica
- Comparison to Published Literature
- Conclusions

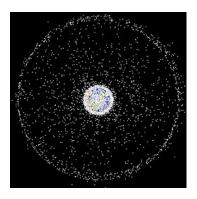
Some NASA Window Applications

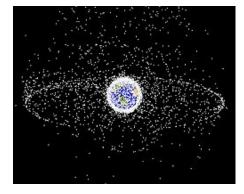
Fused Silica - Workhorse Material

 Fused silica has been the historical material of choice:

- Apollo
- SkyLab (73-74), Mir...
- ISS (98-xxxx)
- Shuttle
- Orion



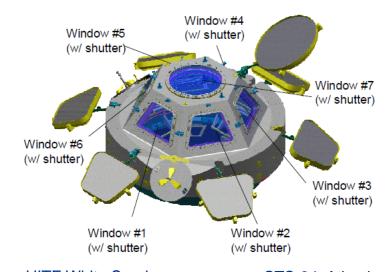

Only one unexpected failure during an Apollo window proof test.



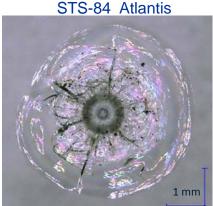
Window Requirements

- Thermal shock
- Mechanical (crack growth)
- Optical (haze, transmittance....imagery, piloting)
- Chemical (atomic oxygen, radiation..)
- Impact residual strength (handling, hyper)

- Big advantages are optical and thermal.
- But why windows at all?! Psychological.

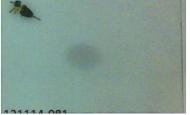

Windows in Use - ISS

■ Most famous are the Cupola windows, which are shuttered:



■ More typical widow (10" ϕ):

HITF White Sands



Some windows are not shuttered and can be damaged by MMOD....

New, Impact Resistant Materials

- A variety of "new" materials have been developed or re-developed:
 - AION
 - Spinel
 - MgO, Alumina, glass-ceramics



19"

24"

One driving force has been military armor:

Might these materials work for spacecraft windows?

Property Comparison

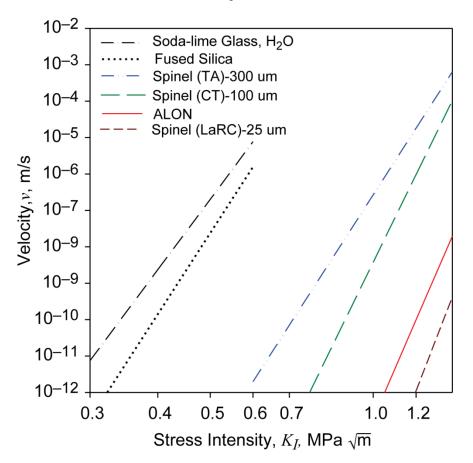
• Thermals shock related: $R'' = \frac{(1-v)\lambda\sigma_c}{\alpha E\rho C_p}$

Material	Young's Modulus GPa	Fracture Strength (MPa)	CTE x 10-6/°C α	Thermal Conductivity (W/mK) λ	Heat Capacity (J/gK)	R (K)	R" (Wcm² /gK)
Silica	72	80	0.5	14	0.77	1733	143
Spinel (coarse grain)	270	80	6	15	0.88	73	3.5
Spinel (fine grain)	270	160	6	15	0.88	73	3.5
AION	314	210	5	13	0.92	99	3.8

- Positive: similar thermal conductivity.
- Negative: new materials have higher CTE.
- Poor thermal shock.

Mechanical Property Comparison

Crack growth related:


Material	Density (g/cc)	Young's Modulus (GPa)	Fracture Toughness (MPa√m)	Crack Growth Exponent, n	Fracture Strength MPa
Silica	2.2	72	0.75	24	80
Spinel (coarse grain)	3.6	270	1.5	22	80
Spinel (fine grain)	3.6	270	2.0	50	160
AION	3.7	314	2.2	35 - 50	210

- Positive: New materials are tougher and SCG resistant.
- Negative: New materials are denser and stiffer.

Slow Crack Growth Curve

The SCG curve captures much of the mechanicals:

Material	Density (g/cc)
Silica	2.2
Spinel	3.6
Spinel	3.6
AION	3.7

Does not account for weight......

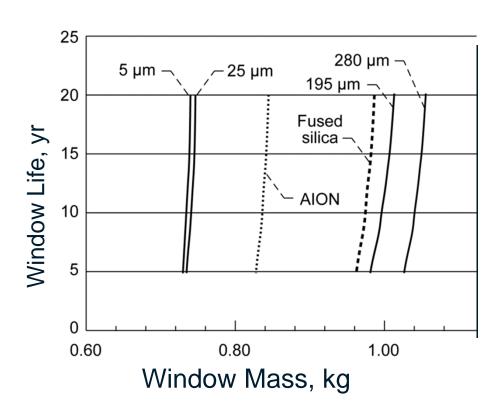
Launch Weight is Expensive.

- Can Mass be Reduced? -

$$\square$$
 Slow crack growth life function: $t_{f min} = B\sigma_{proof}^{n-2}\sigma_{applied}^{-n}$

- Window mass:
$$m = \frac{\rho \pi D^2 t}{4}$$
- Window stress:
$$\sigma_{max} = \frac{3PD^2}{32t^2} (3+v)$$

– Proof stress:


$$\sigma_{proof} = \left(\frac{K_{Ic}}{Y\sqrt{a_{max}}}\right)$$

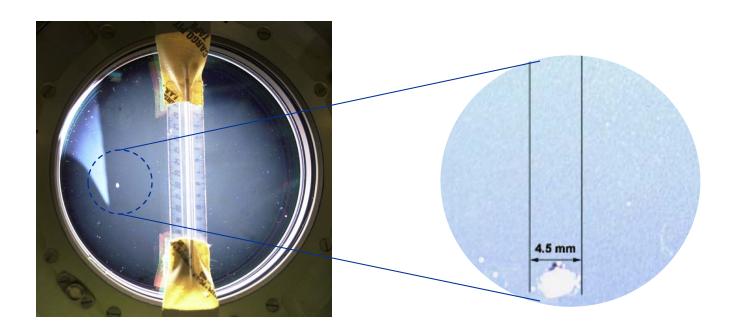
► Mass for a lifetime:
$$m = \left(\frac{t_{f min}}{B}\right)^{\frac{1}{2n}} \left(\frac{K_{Ic}}{Y\sqrt{a_{max}}}\right)^{\frac{2-n}{2n}} \left(\frac{3\pi^2 P \rho^2 D^6}{512}(3+\nu)\right)^{\frac{1}{2}}$$

Relative Mass

Material	Grain Size, μm	Relative Mass
Spinel (TA)	300	1.14
Spinel (AL)	180	1.04
Spinel (CT)	110	.97
Spinel (LaRC)	25	.74
Spinel (Julich)	5	.73
AION	245	.83
Fused Silica		1

- Yes, mass can be reduced from a SCG Perspective!
- For spinel, the grain size needs to be small.......

Impact: Shuttle Examples

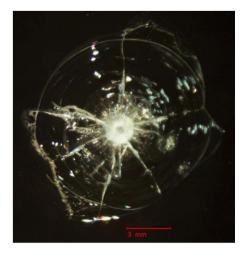


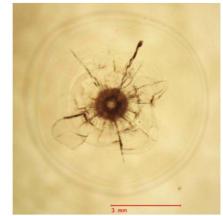
Impact: ISS Example

Russian fused silica window (not shuttered):

Window sealed.

Hyper Velocity Impact of Spinel vs Silica


Similar sizes but very different morphologies:



Large pit with gain boundary cracking.

Central pit with radial and circumferential cracks.

Summary

- Spinel and AION exhibit better fracture toughness and crack growth as compared to glasses, and thus have potential in window systems.
- They can reduce weight from a crack growth perspective.
- Thermal shock resistance metrics are poor component level testing to qualify.
- Impact size is similar, however, the morphology is very different; residual strength needs to be measured.....
- Are the post impact residual strengths similar?

Fused Silica

Observations and Anomalies

Macro-crack Fracture Toughness

Russian Quartz-Silica

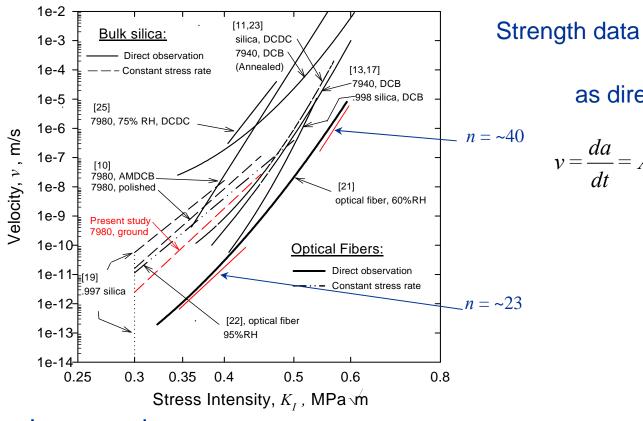
Fracture Toughness (MPa√m)			
Method	Air (75°F, 45% RH)	Dry N ₂	
SEPB 0.71 ± 0.05		0.73 ± 0.02	
VB	0.71 ± 0.04	0.77 ± 0.01	

Shuttle Fused Silica (7980)

Fracture Toughness (MPa√m)			
Method	Air (75°F, 45% RH) Dry N		
SEPB 0.71 ± 0.04		0.74 ± 0.03	
VB	0.73 ± 0.04	0.77 ± 0.02	

Tosoh

Fracture Toughness (MPa√m)			
Configuration	Air (75°F, 25% RH)		
VB	0.73 ± 0.08		


Literature on 7940 & 7980

Fracture Toughness (MPa√m)				
Method	Vacuum	Vacuum/ Dried	Dry N ₂	Source
AMDCB			0.72 ± 0.01	NIST (LB)
DCB	0.74 ± 0.03	0.73 ± 0.02		NIST (SW)
3-Pt	0.75 ± 0.03		0.76	NIST (SW)
DCDC	0.73 to 0.76			Sandia

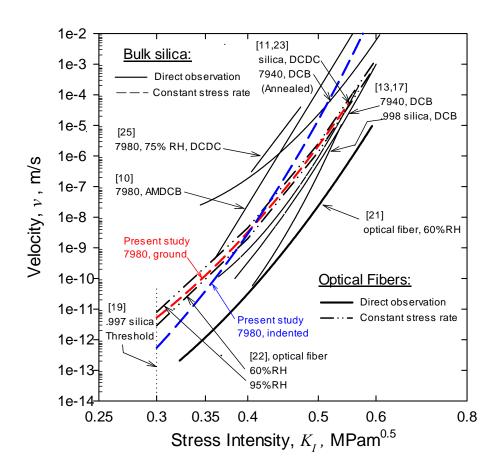
- Silicas have identical fracture toughness at the macro-scale.
- Insensitive to test method, test material, or researcher.

Crack Growth Data for 7940/7980 and Optical Fiber

Strength data fit via the Power Law

as directly observed

$$v = \frac{da}{dt} = A_I K_I^{n_I} = A_I^* \left[\frac{K_I}{K_{IC}} \right]^{n_I}$$


- Large variance.
- Strength methods (small cracks) give a low n.
- Directly observed macrocracks give high n.

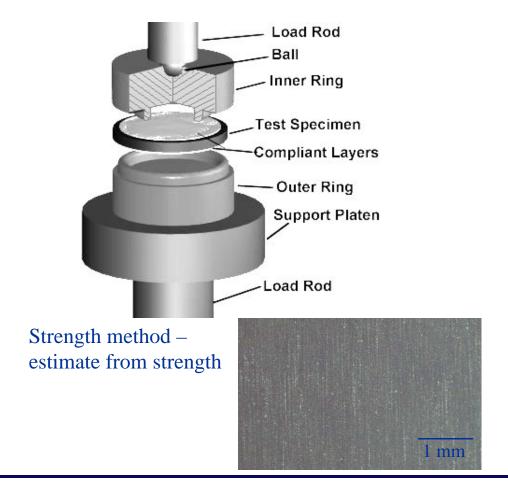
Cracks size or test method effect??

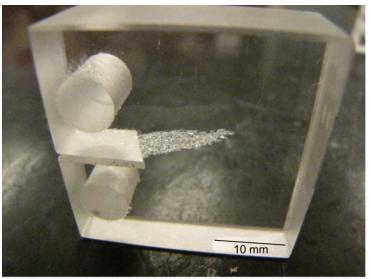
Wide range, directly observed data is nonlinear – exponential law!

Literature Values for 7940/7980 and Optical Fiber

Exponential law or

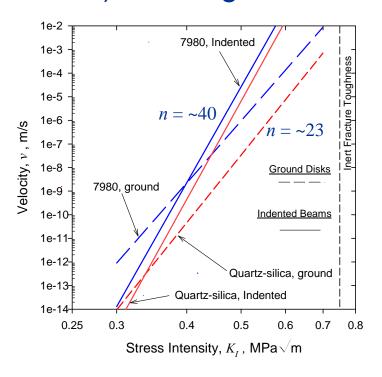
as directly observed:

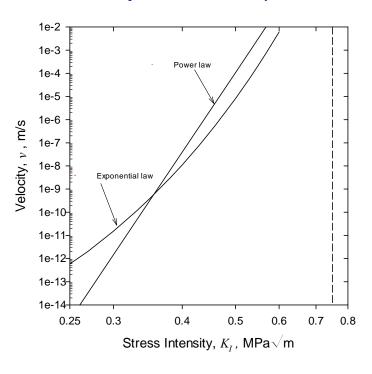

$$v = \frac{da}{dt} = A_2 \exp\left(n_2 \frac{K_I}{K_{Ic}}\right)$$


- The exponential law provides better agreement between directly observed macrocracks and strength based velocity estimates (blends).
- Still some difference between larger and smaller cracks.....

What is Different?

Crack size and observation method used:


Macro-crack method: direct observation of the crack.


How can we determine the source of the differences??

Crack Size Effect

Use strength method to test ground specimen (small cracks) and larger cracks (indented specimens):

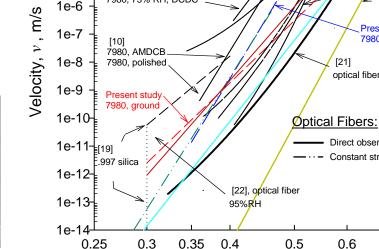
Indented specimen give similar n as directly observed macrocracks – not a method effect. Crack size effect?

Point correction

Line corrction

Other Influences Giving a Crack Size Effect

Residual stress


 Correction (Fuller's, et al.) generally increase the n value and shifts data too far...

1e-2

1e-3

1e-4

1e-5

Bulk silica:

7980, 75% RH, DCDC

Direct observation

Constant stress rate

7980 Fused Silica and Optical Fiber - Power Law

[11,23]

silica. DCDC

7940, DCB

(Annealed)

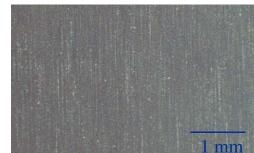
Stress Intensity, K_I , MPa_em

-7940, DCB

-998 silica, DCB

Present study

7980, indented


optical fiber, 60%RH

Direct observation

Constant stress rate

0.7

0.8

Crack Growth of Various Fused Silicas

Water content - need systematic measurements......

Water Crack Growth Parameter		
Material	n	
7980	39	
Russian	43	
Tosoh	35	
GE	37	

Same water content?

 Different silicas exhibit very similar n when test identically! Measure water content......

Water Adsorption

- Near surface adsorption of water creates surface residual stresses (Wiederhorn) and higher n (Tomozawa).
- But does not explain the difference between small and large crack data:
 - Large cracks shouldn't be influenced, yet exhibit high n
 - Small cracks result in low n or high n
 - Research is needed......

Conclusions

- Fracture toughness of several fused silicas are identical regardless of technique, vintage or researcher.
- Slow crack growth parameters of several silica are very similar when tested identically.
- Yet, the reported slow crack growth parameters are quite varied, even for a single commercial silica.
- Use of the exponential function rationalizes some of the differences between large crack, small crack, and strengthbased parameters, but.....future research.
- New materials exhibit better toughness and crack growth as compared to silica, and thus have potential in window systems. More work is needed to qualify these materials.

Acknowledgements

- Thanks to Jim McMahon (JSC) and Penni Dalton (HEMOD) for funding.
- Thanks to Lynda Estes for many discussions.