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Light-Weight SiC/SiC Ceramic Matrix Composite (CMC) –

Environmental Barrier Coating (EBC) Development

Combustor Vane Blade

Monolithic/Hybrid 

Ceramic Nozzles/Blades

Metal components with TBCs Light-weight  SiC/SiC CMC 

components

— Enabling next generation turbine engine hot-section technology: increased 

materials temperature capability and improved future engine performance

— EBCs are critical to long-term environmental durability and life of Si-based 

ceramic engine components
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NASA Environmental Barrier Coating System Development – For 

Turbine Engines

• Emphasize temperature capability, performance and durability for next generation 
for next generation vehicle airframe or engine systems 

• Increase Technology Readiness Levels for component system demonstrations

2900°F

(T41)

Gas TBC Bond 

coat

Metal 

blade
3200°F

(T41)

Gas TBC Bond 

coat

Metal 

blade
3200°F

(T41)

Baseline metal 

temperature

300°F

increase

Gas EBC Bond 

coat

CMC 

airfoil

Tsurface

Tsurface

Current metal turbine 

airfoil system

State of the art metal turbine 

airfoil system 2500°F TBCs

2700-3000°F CMC 

turbine airfoil systems

200-500°F

increase

Tsurface

2500°F TBCs
2700-3000°F 

EBCs

Thin turbine 

coating 

development

2200°F TBCs
2400°F CMCs

2700°F CMCs



4

Fundamental Recession Issues of CMCs and EBCs
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Outline
─ Environmental barrier coating systems: design approach for 

stability

─ Next generation environmental barrier coating systems for CMC 

airfoils and combustors

• NASA coating technologies – advanced composition and system 

development
─ Fundamental research emphasis in understanding degradation, 

property evaluation, and performance modeling

─ Multi-component, multi-layer and composite systems

• EBC processing: plasma spray, electron beam-physical vapor 

deposition and plasma spray-physical vapor deposition 

approaches

• Advanced testing methodologies and simulated engine heat flux 

and stress testing

─ Laser high heat flux test rig and coating thermal conductivity 

─ High temperature durability tests

─ Summary and Conclusions
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Advanced Environmental Barrier Coating and 

Architecture Development

— High temperature and environmental stability 

— Lower thermal conductivity

— Balance designs of low thermal expansion, high strength and high strain tolerance

— High toughness

— Excellent resistance to thermal-mechanical loading, impact and erosion

— Interface, grain boundary stability and compatibility

— Dynamic characteristics to resist harsh environments and with self-healing capability 

High temperature capable, high strength coatings

Energy dissipation and chemical 

barrier interlayer

Environmental barrier

Ceramic matrix composite (CMC)

Nano-composite bond coat

Multilayer Architecture due to Performance Requirements
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Advanced Environmental Barrier Coating Systems:  

Coating Material System Developments and Architecture

• High-stability multi-component ZrO2/HfO2, Hafnium-Rare Earth (RE) silicates, or 

Hafnium-Rare Earth (RE) aluminosilicate composites

• Alternating Composition Layered Composite (ACLC)  and Sublayer EBCs 

systems

– Advanced multi-component and RE silicate EBCs

– Oxide-Si composite bond coats, in particular, HfO2-Si bond coats

– Self-healing and protective coating growth capability

Multi-component RE and/or RE/Hf/Zr silicates

Ceramic composite bond coats

Interlayer: Compositional layer graded or composite systems

SiC/SiC CMCs

Low expansion high toughness HfO2/ZrO2, RE-HfO2-(Alumino)silicates

HfO2 and HfO2 composites

Doped mullite

with ACLC 

(Hf rich bands) 

Doped HfO2+Si and mullite/Si composite bond coat

(High temperature capable with self-healing) 

Increased 

SiO2 activity

Increased dopant RE/Transition 

metal concentrations & increased 

Al/Si ratio



8

Advanced Environmental Barrier Coating Systems

200 mm

Material Systems Temperature 

capability

Thermal

expansion

Resistance to 

oxidation and 

combustion 

environment

Mechanical 

stability

HfO2-RE2O3 ~3000°C 8-10x10-6 m/m-K Excellent Excellent

HfO2-Rare Earth 

silicates

~1900-2900°C 8-10x10-6 m/m-K Excellent Excellent

Rare Earth Silicates ~1800-1900°C 5-8.5x10-6 m/m-K Good Good

Rare earth –

aluminates and 

Alumino silicates

~1600-1900°C 5-8.5x10-6 m/m-K Good Good

HfO2-Si and RE-Si

bond coat

Up to 2100°C 5-7x10-6m/m-K Good Excellent
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EBC Processing using Atmospheric Plasma-Spray (APS) 

and Hybrid Plasma Spray / Electron Beam - Physical 

Vapor Deposition (EB-PVD) Coatings

Plasma-spray processing of 

environmental barrier coatings

200 mm

Early generation hybrid environmental 

barrier coatings systems processed 

with combined Plasma Spray and EB-

PVD processing

EB-PVD Advanced HfO2

Plasma spray ytterbium silicate

Plasma spray HfO2-Si
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EBC Processing using Plasma Spray and EB-PVD

HfO2-Si bond coat

Oerlikon Metco Triplex Processed Advanced EBCs

HfO2-Si bond coat

Directed Vapor EB-PVD Processed Advanced EBCs
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EBC Processing using Plasma Spray - Physical Vapor 

Deposition (PS-PVD)
─ NASA advanced PS-PVD coating processing using Sulzer technology

─ EBC is being developed for next-generation SiC/SiC CMC turbine airfoil coating processing

• High flexibility coating processing – PVD, CVD and/or splat coating processing

• High velocity vapor, non line-of-sight coating processing for complex-shape components

NASA Hybrid PS-PVD coater system

PS-PVD processed 

coatings

Nozzle section view Mid section view End section (sample side) view

Vapor ZrO2-

Y2O3 coating
Splat/partial 

vapor Yb2Si2O7 

10 mm

HfO2-Si bond 

coat
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Laser High Heat Flux Approach

– Turbine level high-heat-flux tests crucial for CMC coating system developments

– Real-time thermal conductivity measurments

– Advanced complex combined mechanical loading conditions and environments 

incorporated
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Thermal gradients:
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Real-Time Thermal Conductivity Measurements 

and Damage Monitoring

Surface flow
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Plasma Spray EBC Processing and Heat Flux Testing

for CMC Component EBC Validations 
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─ Advanced plasma sprayed multicomponent HfO2-rare earth silicate with HfO2-Si based 

environmental barrier coating optimized and down-selected

─ Thermal conductivity ranged from 0.4 – 1.7 W/m-K

Laser heat flux test under thermal 

gradients
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Thermal Conductivity of PS-PVD Yb2Si2O7 Coatings For 

Process Optimization 
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Coating System 2: porosity 16% modeled vs 13% measured

Coating System 3: porosity 28% modeled

Coating system 4: porosity 18% modeled

Coating system 6: porosity 20% modeled

Coating 2

Coating 3

Coating 4

Coating 6

─ Processing and microstructural optimizations, 

aiming at achieving coating stability and 

maintaining lower thermal conductivity

System 2

Thermal conductivity modeled using FEM 
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PS-PVD Ytterbium Silicate EBC Tested in Heat Flux 

Conditions
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Three layer HfO2-ytterbium silicate-Si 

completed 50hr laser heat flux thermal 

conductivity-durability tests in air and 

steam

─ Demonstrated initial durability of HfO2-ytterbium silicate-silicon at 1400-1500°C test 

temperatures in air and laser heat flux steam tests

─ Thermal conductivity ranged from 0.6 to 2.5 W/m-K

─ Achievable low thermal conductivity and unique structures with coatings

Laser heat flux steam test
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PS-PVD Ytterbium Silicate EBC Tested in Heat Flux 

Conditions - Continued

─ Demonstrated initial durability of ytterbium silicate  

with advanced HfO2-Si bond coats at 1400-1500°C 

test temperatures in air and laser steam tests

─ Thermal conductivity ranged from 0.6 to 2.5 W/m-K

─ Some sintering led more significant thermal 

conductivity increases 

PS-PVD processed Ytterbium/HfO2-Si 

bond coat

50 mm

PS-PVD processed composite HfO2-Si 

bond coat
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Composite EBCs Considered for Improved Stability –

Process also developed for EBC systems
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Multi-component HfO2(t',m)+Yb2Si2O7/Yb2SiO5 70:30

 

Multi-component HfO2(t',m)

 

Biaxial strength, MPa

- Layered and nano-composite designs incorporated in various processing 

approaches

- Advanced composite systems shown to improve the temperature capability and 

recession resistance

- Improved mechanical properties for erosion and impact resistance

- Improved CMAS resistance
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EB-PVD Composite Environmental Barrier Coatings –

CMAS Reaction Tested HfO2-Si bond coat

EB-PVD Processed EBCs: alternating HfO2-rich and ytterbium silicate layer 

systems for CMAS and impact resistance
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Advanced NASA 2700°F HfO2-Si and Rare Earth-Si Based 

Bond Coats

SiC

RESi(O)

RE2Si2O7-x

20 mm

F

G

EDS F

EDS G

̶ Microstructure of a HfO2-doped (Yb,Y)Si(O) 

bond coat

EDS A

EDS C EDS B

- Continued improvements in processing 

robustness and composition 

optimization
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Advanced EBC Successfully Tested under 1000 hr Stress-

Rupture Conditions at 2700°F 

- EBC systems tested included various processed APS and EB-PVD EBCs 
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1371°C (2500°F),103 MPa (15 ksi) testing
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Advanced EBC-CMC Fatigue Test with CMAS: 

Successfully Tested 300 h Durability in High Heat Flux 

Fatigue Test Conditions 
- A thin EB-PVD turbine airfoil EBC system with advanced HfO2-rare earth silicate 

and GdYbSi (controlled oxygen activity) bond coat tested at TEBC-surface 1537°C, 

Tbond coat 1480°C, Tback CMC surface 1250°C

- Fatigue Stress amplitude 69 MPa, at mechanical fatigue frequency f=3Hz, stress 

ratio R=0.05

- Low cycle thermal gradient fatigue 60min hot, 3min cooling

Strain amplitude

1537°C, 69MPa (10ksi), 300 h fatigue (3 Hz, R=0.05) on 

14C579-011001_#8  CVI-MI SiC/SiC (with CMAS)

Fatigue strain-time plot

Fatigue temperature-time plot
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Advanced EBC Fatigue Creep-Fatigue of EBCs-CMCs in 

Complex Heat Flux and Simulated Engine Environments
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• Long-term creep and fatigue validated EBCs and CMCs at various loading levels

• Demonstrated advanced 1482°C (2700°F) EBC and bond coat capabilities in 

complex environments

• Advanced coatings have minimized environment degradations of CMCs, 

demonstrating durability in fatigue and CMAS environments  

Stress-oxidation and stress-CMAS environmental testing summary
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Summary and Conclusions

• Advanced EBCs being developed and evaluated using APS, hybrid APS/EB-PVD, EB-

PVD and, PS-PVD

─ Achieved advanced composition designed EBCs

─ Significantly expanding envisioned high performance coating architecture development

─ Demonstrated initial durability

• Advanced, high temperature testing approaches showed significant advantages in 

the development of advanced environmental barrier coating systems

─ Simulated engine thermomechanical conditions

─ Simulated environment conditions

─ Real time thermal conductivity, stability and durability

─ Capable quantifying the EBC degradation and performance
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