The Transiting Exocomets of HD 172555

C. A. Grady
Eureka Scientific & GSFC
In collaboration with

Alex Brown (Colorado), Inga Kamp and Pablo Riviere-Marichalar (Groningen), Aki Roberge (NASA's GSFC), Barry Welsh (Eureka Scientific)

Talk Roadmap

- Quick review of β Pic protypical transiting exocomet system with disk and planet
- HD 172555 β Pic's evil twin and its transiting exocomets
- Implications for planet frequency and searches for additional systems

I. Background - β Pic

- A5V star $(T_{eff}=8100 \pm 200 \text{ K})$
- Young moving group member (23 ± 3 Myr Mamajek & Bell 2014)
- 2 component disk outer disk at ~120 AU, viewed edge-on (Dent et al. 2014), inner disk to ~40 AU inclined by 5° with respect to the outer disk (Golimowski et al. 2006)
- Gas: molecular, atomic and a range of ionization stages of abundant elements

The Case of β Pic

- IR excess detected by IRAS
- edge-on debris disk first imaged by Smith & Terrile 1984
- no variability over 15 years Apai + 15
- inner disk inclination with respect to outer disk is 5° (Golimowski et al. 2006)

Edge-on Disk

- Constrain location of planetesimal belt from mm imagery
- Can locate or place upper limits on cold molecular gas
- CO asymmetrically distributed
- Pericenter offset seen with ALMA – indirect signature of planet(s)

Dent+15

What we learn from Line of Sight UV Spectroscopy

 CO absorption at system velocity
 Roberge + 2000

1.5 1.0 e²Σ - X'Σ' (1-0) A-X (0-0) 1543.0 1543.5 1544.0 1544.5 1545.0 1545.5 Wavelength (Å)

•N(H2)≤1E18 cm⁻² Lecavelier des Etangs +01 CO/H2>6E-4

•low optical depth + radiation field of star – lifetime is <200 years

 gas not primordial, must be sequestered in planetesimals

Roberge + 2000

Atomic and Ionic Gas in the β Pic System

- A-shell star features superposed on rotationally broadened photospheric spectrum - Slettebak 1975 in Ca II and Na I
- same transitions used to probe ISM, so natural to go to UV where high oscillatorstrength transitions of first few ionization stages of cosmically abundant elements are located

Beust 14

High Velocity Gas

- typically redshifted,
 although blue-shifted events are
 known Crawford + 98
- Higher the velocity,
 the faster the variablity
- absorption optically thick, but does not fully cover the stellar disk Lagrange + 1988

• 30 years of data

Vidal-Madjar 1994

Simulations

- assume we are tracking ions in coma of evaporating body –Beust & collaborators (1990, 1995, 1998, 2014)
- periastron varies from event to event
- event duration indicatesr<0.5 AU
- longitude of periastron not random
- need high eccentricities
- long duration events => fragmentation
- Same mechanism as for Sun-grazing comets
- Mean Motion Resonances
- favored mechanism
- implies Jovian mass planet, eccentricity ~0.05 required

Link to β Pic b?

- Planet reported from direct imaging (Lagrange + 2010)
- Need refined orbit for the planet to test key prediction, eccentric orbit
- Other A to early F star members of βPic Moving Group more distant – require smaller IWA imaging observations for direct planet detection, but 2 known planets in this moving group - β Pic and 51 Eri (Macintosh + 2014)

II. HD 172555 – β Pic's Evil Twin

- A6V, T_{eff}=7800±200 K d=29.2 pc (Riviere-Marichalar + 2012), BPMG
- Star is co-moving with CD -64°
 1208 (K5Ve, Feigelson +06)
- [O I] (Riviere-Marichalar+12)
- silica and SiO (Lisse et al. 2009, but see Wilson + 2016), suggestive of a hypervelocity impact
- Small disk (Smith +12) to ~24
 au, inferred inclination i~75°

Lisse + 09

HD 172555 - Ca II

CS absorption well separated from IS feature

Variable low velocity gas seen in Ca II;
 no stable gas

• 4 episodes seen in HARPS data (Kiefer +14) § suggests that FEB presence is at best sporadic

no Ca II at the epoch of our HST observations

7/25/16

NCAD VI

Transiting Exocomets – HST April 2015

C II COS ~6 days separation FEBs in both datasets $-v_{max}$ = +160 ±10 km s⁻¹ Excess signal compared to α Cep •C II, Si III, and C III 1176 and red wing Ly α – chromospheric emission – star is active – amplitude and velocity < β Pic data from 2014

CIV

• C II, C III not the only carbon ions seen.

Comparison with
Altair – not perfect
but good enough to
show excess absorption
in C IV

Current Limits to Analysis

- comparison data
 sparse and essential
 at λ<1600 Å
- Large dynamic range of data makes high S/N spectra challenging
- Stellar activity

System Architecture

NCAD VI

III. What Have We Learned?

- Transiting exocomets unexpectedly common in βPMG (at least 40% of A stars), also seen in 49 Cet (Roberge + 2014; Miles + 2016) and potentially other young systems
- Infall features at epoch when Ca II data suggest should not be seen possibly more than one family of parent bodies?
- Most conspicuous in carbon ions similar to β Pic and 49 Cet
- Direct imaging limits to planet mass 2-3 M_{jup} at r>0.5"(14.5 AU), 4 M_{jup} at 0.4" (11.68 AU), smaller separations unexplored (Quanz + 2011)
- If have a common origin in high-eccentricity bodies perturbed into star-grazing orbits by Jovian-mass planets, may have a novel technique for finding exoplanets.

Potential Jovian-mass planet frequency in βPMG A stars:

- 2 systems with transiting exocomets known, data for a third in October...
- Planet frequency for A- early F stars 25% from direct imaging
- Implication is that Jovian-mass bodies are common, and for the βPMG most probable location(s) are r~8-20 AU – gap in exoplanet searches

C II -optically thick

 \bullet adopt α Cep for photospheric spectrum, since Simon, Landsman, & Gilliland 1994 find no net C II emission, and add optically thin CII emission components to make continuum on blue edge of profile flat

• S/N largely dominated by noise in α Cep data $\pm 5\%$ - C II is optically thick and we measure covering factors up to 70%

7/25/16

Follow-on

- Acquisition of additional COS data, suggest single grating setting paralleling obs. of β Pic. – full orbit time-tag observation at or near opposition to minimize geocoronal emission
- Comparison object ι Boo match in Sp.T., color, V magnitude – needed for C IV region; would help with COS region
- Acquisition of comparison object spectra with FEB target observations may open up observations of very late A/early F stars and allow exploration of activity as a function of stellar rotation.