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NASA Turbine Environmental Barrier Coatings for CMC-

EBC Systems

• Emphasize temperature capability, performance and durability for next generation 
turbine engine systems

• Increase Technology Readiness Levels for component system demonstrations
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Environmental Barrier Coating and SiC/SiC System  

Development: Testing Challenges

• High Temperatures: 2700 to 3000°F (1500-1650°C) along with higher 

interface temperatures

• Exposure to water vapor and combustion products

• High Cyclic Stresses: thermal and mechanical, creep-fatigue effect

• Combined Interactions, in-plane and through-thickness gradients

• High Velocity Gases: Mach 1 and 2

• High Pressures: ~ up to 40 to 50 atmospheres

• Long term durability: 20,000 hr design life
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Outline

─ Advanced testing approaches for SiC/SiC and ceramic coating 

development: laser high heat flux based testing approaches

─ NASA CO2 laser rig development

─ Thermal conductivity

─ Cyclic durability and monitoring degradations of EBCs and CMCs

- Laser high heat flux and mechanical tests

- Combined high heat flux - mechanical tests

- High heat flux biaxial creep/fatigue test rigs

- Sub-element testing

─ Summary and future directions
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High Power CO2 Laser Based High Heat Flux Testing for 

SiC/SiC and Environmental Barrier Coatings Development
– Developed in 1990’s, the rig achieved turbine level high-heat-fluxes (315 

W/cm2) for turbine thermal barrier coating testing

– Crucial for advanced EBC-CMC developments
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Heat flux

Cooling – high velocity air or air-water mist

Achieved heat transfer coefficient 0.3 W/cm2-K

Turbine: 450°F across 100 microns 

Combustor:1250°F across 400 microns

Test rig
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High Power CO2 Laser Based High Heat Flux Testing for 

SiC/SiC and Environmental Barrier Coatings Development 

- Continued
– NASA high power CO2 laser rig systems 

– Various test rigs developed

– 7.9 micron single wavelength and 1 micron two color 

wavelength pyrometers for temperature measurements

– Thermography system for temperature distribution 

measurements

– Capable of programmable test mission cycles

– Capable of mechanical load cycles under high heat flux

– Environment test conditions (e.g., steam and vacuum)

High heat flux combustor rigSome temperature thermal gradient cycles
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High Power CO2 Laser Based High Heat Flux Testing for 

SiC/SiC and Environmental Barrier Coatings Development 

– Continued
– Controlled beam profiles, beam size and power density were major emphases, 

by using rotating ZnSe integrating lens with various focus lengths 

– Uniform distribution up to 2-3” diameter beam size for various testing

Example of 1” diameter disc specimen tests and beam profile

2” beam size subelement tests

Laser high heat flux rig
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High Power CO2 Laser Based High Heat Flux Fatigue Test 

Rig
– Laser creep and fatigue testing capable of full tension and compression loading 

– Uniform distribution up to 2-3” diameter beam size for various testing, 

depending on the heat flux requirements

Laser heat flux Thermal HCF/LCF Rig – Overall View

Specimen under testing in tensile-compression fatigue rig
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High Heat Flux Rig Testing with Water vapor Steam 

Chamber – Established in Early 2000

- Steam injected at up to 5m/sec

- Testing temperature >1700°C

─ High temperature and high-heat-flux testing capabilities

─ “Micro-steam environment” allowing high water vapor pressure, relatively high 

velocity under very high temperature condition

─ Used for 3000°F EBC-CMC developments

Steam during 

cooling cycles

High temperature testing 

with steam flow
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Thermal Conductivity Measurement by a Laser High-Heat-

Flux Approach

Two-color and 8 mm 

pyrometers for 

Tsubstrate-back

8 mm pyrometer 

for Tceramic-surface

Where )(/)( tTlqtk ceramicceramicthruceramic 
radiatedreflecteddeliveredthru qqqq  





 

substratebond l

substrate

thrul

bond

thru
backmetalsurafceceramicceramic

Tk

dlq

Tk

dlq
TTtT

00 )()(
)(

and

radiatedq
reflectedq

Optional miniature 

thermocouple for additional 

heat-flux calibration
thruq

thruq

deliveredq

ceramic coating

bond coat

substrate

bondsubstrate

measuredceramic

TT

TT





Ttc



11

Thermal Gradient Cyclic Behavior of a Thermal 

Environmental Barrier Coating System
– Sintering and delamination of coatings reflected by the apparent thermal 

conductivity changes
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Cyclic Testing of 

8YSZ/mullite/mullite+20wt%BSAS/Si on SiC/SiC: 

Tsurface 1482°C/Tinterface 1175°C 

Steady-State Testing of 8YSZ/on Rene N5 

Superalloy: 

Tsurface 1371°C/Tinterface 1163°C
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Environmental Barrier Coating and High Heat Flux 

Induced Delaminations
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Crack Extension Force G as a function of time

for 2.0mm half delamination length and crack depth of 0.08mm
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Environmental Barrier Coating and High Heat Flux 

Induced Delaminations
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Crack Extension Force G as a function of time

for 2.0mm half delamination length and crack depth of 0.08mm
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The Long-Term Durable CMC Coating System Testing 

under High Heat Flux Conditions

─ HfO2/Hf-Gd-Yb-Y-aluminosilicate/Yb2Si2O7-BSAS/Si  environmental barrier coating 

on SiC/SiC successfully demonstrated 500 hr high-heat-flux durability at 2700°F

Laser high-heat-flux test rig 

for advanced environmental 

barrier coating development 

Tested EBC-CMC 

specimen tested for 

500 hr durability

The EBC-CMC 

specimen under 

testing

Laser high-heat-flux testing for the environmental 

barrier coating: surface temperature ~2700°F 

(1482°C ), ceramic coating/CMC  interface 

temperature ~2300°F (1260°C), CMC back 

~2100°F (1150°C), with 1 hr hot time cycles; 

coating thermal conductivity met initial design goal
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Thermal Gradient Cyclic Behavior of Air Plasma Sprayed 

Yb2SiO5 (with HfO2 Composite)/Yb2Si2O7/HfO2-Si Coatings 

on SiC/SiC CMCs

• Tsurface ~1482-1500°C, Tinterface 1350°C, T back surface 1225°C, heat flux 110 W/cm2

• Localized pore formation
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High Heat Flux Thermomechanical Testing for EBC 

Development

High heat flux tensile TMF and rupture testing

─ High heat flux and combined thermal-mechanical loading capabilities established to allow 

SiC/SiC system performance data to be obtained under simulated operating conditions

─ A 1000 Hz high heat flux HCF testing rig is being established this year

Laser heat flux

High heat flux flexural TMF testing: HCF, 

LCF, interlaminar and biaxial strengths

Cooling shower 

head jets

Test specimen

High 

temperature 

extensometer

Laser beam  

delivery optic 

system
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High Heat Flux Biaxial Testing for EBC Development

- Allows very high temperature, high heat flux cooled thermal gradient testing of 

CMC-EBC under engine equivalent biaxial stress conditions

- Capable of fatigue testing up to 100 hz

- Accommodates 1” diameter and 2” diameter disc test specimens, and 

subelement testing

Ball-on-Ring

Ring-on-Ring

Temperature

Axial total creep displacements under heat flux 

testing can be measured, and modeled by FEM 

analysis
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A Two-layer Yb2SiO5/Yb2Si2O7 Ytterbium Silicate EBC on 

SiC-SiC CMC 
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Coating cracking

- Tested Tsurface1420°C and Tinterface 1315°C, load 445 N (stress ~200 MPa)

- Excellent correlations between thermal conductivity and creep strain response 

due to coating failure

Surface

Cross sections
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EBC Coated CMC Rupture Strength Tests under Heat Flux 

Using Digital Image Correlation (DIC) Strain Measurements

White LED 

Lamps

Laser Optics

Pyrometer

Specimen

DIC 

cameras

The laser high heat flux creep 

test rig

• A coated CVI-MI specimen 

shown in heat flux uni-axial 

tension rig

• Digital Image Correlation 

(DIC) is used to determine 

localized strain fields at high 

temperatures

• Using Y2O3 paint

• Acoustic Emission (AE) and 

Electrical Resistance (ER) 

also incorporated

With Matt Appleby et al, Surface and Coatings Technology, 284 (2015) 318–326.
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High Pressure Burner Rig Pre-exposed EBC-CMC 

Specimens (10 atm, 2400°F, 30 h) Fast Strength Tested in 

the Laser Heat Flux Tensile Rig at High Temperature
• The EBC HfO2-Si coated CVI-MI CMC specimen shown near intact

• As comparison, the uncoated CVI-MI specimen exposed indicates more severe 

degradation of composite properties

• Oxidation and embrittlement of the MI-CVI CMC in HPBR lead to the lowers 

strength of the uncoated specimen

coated

uncoated

Extensometer DIC

uncoated

coated

Specimen

Surface 

Temp.

(°C)

Back 

Temp.

(°C)

coated 1230 1070

uncoated 1200 1010

Specimen
E (GPa)

Extensometer    DIC

σUTS

(MPa)

εfail

(%)

coated 241             266 238 0.371

uncoated 146             221 166 0.134

Stress strain curve

With Matt Appleby et al, Surface and Coatings Technology, 284 (2015) 318–326.
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AE Waveform Analysis and DIC Failure Maps

With Matt Appleby et al, Surface and Coatings Technology, 2015

Failure 

Plane
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strain: 0.96%
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• Energy distribution of AE events compared in specimen gage section with 

corresponding DIC strain mapping at failure stress

• The coated CMC specimen showed higher strains and AE event energies
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DIC Full-Field Strain Measurements in Heat Flux Tensile Tests

 

Side view of thicker EBC coated tensile specimen as heated. Top=1450C, Bottom=1200C, 

intermediate=1300C 

 

Deformation under P=5400N.  Due to bending, bottom surface carries higher load and EBC finally is in 

tension. 

FEM-modeling of thermal gradient tensile specimen heating

bending: Multilayer EBC coated tensile specimen modeled to help

understand the EBC stress distributions in thermal gradient heating

and mechanical tensile stress conditions, validating using DIC

Example of EBC-CVI-SMI CMC tensile loading in-plane (axial) and out-

of-plane strain distribution 

– DIC strain measurements of heat flux thermal gradient tensile testing

– Thin EBC HfO2-Si CVI-MI CMC

– Axial, in-plane strains ~ 0.96%

– Out of plane deflection ~ 0.05-

0.09 mm

– Tests help validate FEM models
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EBC Delamination and CMC Interlaminar Toughness 

Testing and Modeling under Heat Flux Conditions
• Test configuration (Haynes alloy stiffener-Optional)/EBC (Ytterbium Silicate-

Si/2D SiC/SiC CMC)

Substrate thickness = 2 mmSiC/SiC CMC

So=100 

mm

Si=80 mm

40 mm

Haynes 230
Haynes 230 Stiffener= 1.58 mm
EBC+Glue= ~0.3 mm total

Specimen total height W = 3.88 mm

Specimen width B = 10 mm

2a

a/2 mm a/Si KI-norm KII-Norm Angle, deg G-Norm

2 0.1 1.07 0.59 29.10 4.89E-05

The FEM Table numbers used (close to steady-state)

Mode Mixty 29.10 deg

Normalized Stress Intensity Factor – FEM modeled 

solutions

P/2 P/2

P/2 P/2
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EBC Delamination and CMC Interlaminar Toughness 

Testing and Modeling under Heat Flux Conditions -

Continued
• Si bond coated specimen, failure load at -28 lbf, Room Temperature
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EBC Delamination and CMC Interlaminar Toughness 

Testing and Modeling under Heat Flux Conditions -

Continued

Normal Stress

Shear Stress

MPa

MPa

KIC ~ 0.44 MPa.m1/2

KIIC ~ 0.72 MPa.m1/2

JC~ 5.0 J/m2

- The CMC-coating interlaminar fracture energy tested from a uncoated MI SiC/SiC

CMC specimen under combined thermal heat flux and mechanical flexural loading
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EBC Coated CMC 2650°F (1454°C) Creep Rupture 

Durability Test
• SiC/SiC CMC 12C-470-022 SiC/SiC CVI-MI CMC specimen

• Coated with 2700°F (1482°C) RESi and Rare Earth EBC

• Test temperatures: TEBC surface at 2850-3000°F (1600-1650°C), and Tcmc back at ~2600°F 

(1426°C)

Creep rate 7.1x10 -6 1/s
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Advanced EBC Coated CMCs Demonstrated Creep and 

Fatigue Durability at ~2700°F

- Turbine airfoil EBC systems with advanced HfO2-rare earth silicate and GdYbSi or 

NdYbSi bond coats tested with CVI-MI and CVI-PIP CMCs in laser heat flux rigs

- Demonstrated initial durability at 2700°F

- CVI-MI, Fatigue loading 69 MPa 10 

ksi (69 MPa), R=0.05, with 1 h

- Thermal LCF

- TEBC-surface ~1537°C (~2800°F)

- Tbond coat 1480°C (~2700°F)

- Tback CMC surface ~1250°C (2282°F)

- 3D CVI+PIP unbalanced, 

Creep loading 50MPa (7.5ksi)

- TEBC-surface 1537°C (2800F)

- Tbond coat 1480°C (~2700F)

- Tback CMC surface 1271°C (2500F)

- In comparison with previously lower 

temperature creep tested EBC 

coated prepreg MI and CVI CMCs

CVI-MI

3D CVI+PIP unbalanced
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SiC/SiC Turbine Airfoil Trailing Edge Tests

- Subelement wedge testing and high temperature tests, aiming at understanding 

the CMC and EBC degradation  
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Summary and Future Directions

• Advanced high heat flux creep rupture, fatigue  and biaxial ball-on-ring rigs 

established for simulated EBC-CMC testing

─ High temperature comprehensive testing capability

─ Real time coating degradation monitoring

─ Incorporated thermography, electrical resistance, acoustic emission for in-situ NDE  

─ FEM models helped understand the testing

• Long term creep rupture and fatigue behavior evaluated for EBCs-CMCs at 1482°C 

(2700°F)

• The heat flux thermomechanical testing capabilities crucial for the EBC-CMC 

materials development and life modeling

Future plans

• HCF high heat flux rig with additional environmental testing capabilities (mixture controlled 

steam or vacuum capabilities)

• Additional full field strain measurement experiments, in particular at high temperatures

• Planned a multi-axial testing rig for CMC and EBC testing
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Laser Heat Flux Thermal Gradient Associated Stresses

Equation when disk is free to bend
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Where = Coefficient of Thermal Expansion, E= Modulus,  = Poisson’s Ratio,

t = specimen thickness,  z = axial distance from the mid section, a = radial distance to the edge support 

– Through thickness gradient stresses in a disk test specimen

– Constrained subelements tests may have advantages in understanding complex 

stress effects on SiC/SiC durability  
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Debonding and Interlaminar Studies at High Temperatures 

under Thermal Gradients – with Creep 10 ksi Loading

- Early EBC-SiC/SiC specimen thermal gradient creep test, completed 600 hr creep 

rupture testing at 69 MPa (10 ksi)

- Convoluted EBC and CMC degradation in creep testing EBC-CMC specimens, 

conductivity reductions
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