

Evaluation of Additively Manufactured Metals for Use on Oxygen Systems

Presented By: Jonathan Tylka NASA Johnson Space Center White Sands Test Facility

Aerospace Fire History

Oxygen Compatibility

- Additive Manufacturing (AM) has been, and will continue to be, used in oxygen systems
- Compatibility studies are a necessity
- Risks if not pursued
 - Equipment Damage, Loss of Mission, Loss of Life
- NASA Centers of Excellence leading efforts
 - White Sands Test Facility (WSTF)
 - Oxygen Compatibility Testing
 - Marshall Space Flight Center (MSFC)
 - Additive Manufacturing
 - NASA Engineering Safety Center (NESC)
 - Statistical Design of Experiments

We must manage the risks...

Maximize more compatible materials

- Ignition resistant
- Burn resistant
- Low damage potential

Minimize ignition mechanisms

- What generates heat in my system?
- Control or eliminate

Utilize good practices

Oxidizer

Oxygen

Compatibility

Assessment

6.0

 Implement all aspects of oxygen system safety

Maximize

- Testing determines AM flammability performance
- NASA-STD-6001B Test 17/ ASTM G124
 - Upward flammability test
 - 1/8-in. diameter x 6-in. long
 - Unheated
 - Static Pressure
 - >99.5% Oxygen
 - Magnesium/Pyrofuse Promoter

Preliminary Flammability Testing

- Experiment conducted between:
 - Wrought Inconel 718
 - Selective Laser Melting (SLM) Inconel 718 (IN718)
- Statistically designed, efficient, and randomized
- Test specimens manufactured at MSFC
- Material flammability differences noted
 - Result statistically significant but counterintuitive
- SLM IN718 post-build processes need investigation
 - Stress relief (SR)
 - Hot isostatic pressing (HIP)
 - Solutionizing and aging heat treatments (HT)

NASA White Sands Test Facility

Preliminary Flammability Results

- SLM IN718 with/without HIP vs Wrought
- All materials had AMS 5664 HT

Various Nb Precipitate Formation

As-Printed/HT

HIP/HT

Wrought/HT

Axial Burning Interface of HIP Sample

Composite Energy-Dispersive Spectroscopy (EDS)

EDS Mapping of Individual Elements Ni K series O K series

Line Data 1 Spectrum 221 Spectium 223 Spectrum 222 1mm

1mm

1mm

С

11

EDS Mapping of Individual Elements

 Reference Image
 Cr K series
 Fe K series

 Image
 Image
 Image
 Image

- Scavenging of flammable constituents in RSZ
 - Cr, Al, Ti, Nb

NASA White Sands Test Facility

- Concentration of non/less flammable constituents in RSZ – Ni
- Fe remained distributed in BM, RSZ, and O Zones

Flammability Study - Ongoing

- SLM IN718
- Replicate and expand experiment
- Print parts in same build
- Synchronously SR and HT
- Factors
 - HIP (with/without)
 - Effect of HIP temperature excursion
 - Performed in vacuum furnace
 - Furnace cool vs. quench
 - AMS 5664 HT (with/without)
 - Location on build plate

Minimize

- Particle Impact
 - Most common direct igniter of metals
 - Hazards increase with:
 - Pressure, temperature, velocity, flammable particles
 - SLM Components shed metal particles (Lowrey 2016)

Planned Ignition Study

- Subsonic & Supersonic Impacts on SLM IN718
 - Pressures, temperatures, velocities
- Study effect of AM characteristics on ignition sensitivity
- Factors
 - Print direction
 - Surface treatment
 - Post-manufacturing processes (pending flammability results)
 - Particle types

Utilize

- AM production
 - Dedicated machine(s) for each material
- Precision cleaning
- AM component/system design recommendations
- Assembly
- Operations
- Maintenance

Long-Term Goals

- Draw additional commercial and government partners
- Test full-scale AM components
- Develop guide for the use of AM in oxygen systems
 - Design
 - Manufacturing
 - Cleaning
 - Assembly
 - Operations
 - Maintenance

Acknowledgements

- WSTF
 - Steven Peralta
 - Kyle Sparks
 - Steven Mathe
- MSFC
 - Ken Cooper
 - Brian West
 - Arthur Brown
- NESC
 - Ken Johnson

- Paul Spencer
- Mika Meyers
- Ilse Alcantara
- Nikki Lowrey
- Mark Mitchell
- Kevin Edwards

- Susana Harper
- Fred Juarez
- Steven Bailey