Passive microwave remote sensing of surface
turbulent fluxes: the role of clouds and statistics

BRENT ROBERTS!, CAROL ANNE CLAYSON?, CLAY BLANKENSHIP?
! NASA/MSFC, EARTH SCIENCE OFFICE

2 WOODS HOLE OCEANOGRAPHIC INSTITUTION

3> UNIVERSITIES SPACE RESEARCH ASSOCIATION




Outline

» Motivation & Background

> Regression Approaches

> Current Evaluation

> Biases and Cloud Weather States

»Moving Forward?
o Option #1: Weather state specific retrievals
o Option #2: Clear-sky empirical retrievals
o Option #3: Physical Model based retrievals



Motivation

* The turbulent latent heat flux (LHF) and sensible heat fluxes (SHF) are critical
components of the Earth’s energy and water cycle.

* Results from the recent NASA Energy and Water Cycle Study (NEWS) Climatology
indicate LHF/Evap requires the largest adjustments to balance the water and
energy cycle as estimated from current state-of-the-art component estimates.

* In-situ surface observations from buoys and voluntary observing ships (VOS)
constitute a valuable source of direct observations of surface meteorology required
to estimate fluxes. However, they offer incomplete coverage. Satellite based
estimates provide an alternative approach with more complete global coverage
every 1-2 days.
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Background

Bulk flux algorithms relate the turbulent fluxes to near-surface meteorology
LHF=F(U10,Qair,Qsfc(SST),Tair)
SHF=F(U10,8557,Tair)
» Estimating the fluxes over the global (ice-free) oceans reduces to i) retrieving each of

the near-surface bulk variables and application of a suitable bulk-flux algorithm (e.g.
COARE 3.0).
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Regression Approaches

Physical/Semi-Empirical/Empirical

* Remote Sensing Systems (RSS) Geophysical Model

* Use surface emissivity and atmospheric transmission model to simultaneously retrieve
parameters including wind speed, cloud liquid water, precipitation, and sea surface
temperature (for certain sensors)

* Bayesian and Constrained linear inversion methods (e.g. GPROF, sounding inversion)

* Obtain a (hopefully large) paired — in space and time — training dataset of observed
response variable and independent parameters (e.g. brightness temperatures) and attempt
to model the relationship.

(SST, U10, Qa, Ta,) = F(TB,ouys TB1gnv» TB2oys TB3snys TBgshy)

From statistical decision theory, finding a “best” model for predicting a response variable—
under squared error loss— results in the optimal solution (Hastie et al. 2009):
Jf(x)=E(Y[X=x), i.e. the conditional expectation

* Direct empirical methods make assumptions on the form form of these conditional
relationships and then training parameters of the model using the paired dataset.

* All current satellite-based latent heat flux products use some form of empirical regression for
specific humidity and/or wind speed, air temperature, sea surface temperature.




How are we doing?

* The different products show strong regional patterns
of biases in relation to surface observations (IVAD)

* QSQA biases are driven primarily by differences in
the near-surface humidity retrievals rather than SST

e GSSTF v3, HOAPS v2, and JOFURO v2 all show similar
large scale patterns of bias, with strong regional
signatures over the subtropical trade wind regimes
and West Pacific STCZ

* |FREMER v4 and SeaFlux-V1 show muted regional
signature, but they are still evident




* The structure in the retrieval (Qa, top) biases appear
, = { to be co-aligned with patterns of cloud weather
| & states (WS)

ST =

e WS are defined using ISCCP joint cloud top pressure /
cloud-optical depth histograms.

* Large biases are seen regions associated with deep
convection and thick stratocumulus decks

* Large biases are also seen aligned well with Global
WS 7 (Tselioudis et al. 2012)
* Mostly clear, w/ thin boundary layer cloudy
e Thus, itis not simply a problem of cloud liquid
water contamination
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Weather states and passive microwave empirical retrievals

* Near-surface humidity, air temperature, and wind speed retrievals show strong regime
dependent conditional biases

* When the underlying component of the conditional biases are regionally dependent, the
application of retrievals based on the “global” training dataset will result in regional biases

Recall: f(x)=F£(Y[X=x), i.e. the conditional expectation

Binned Qair and U10 vs. observed F15 TBs
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Moving Forward — Option #1 : Brute Force

* Develop empirical retrievals for each of the underlying cloud weather states. Using
an external a priori weather state dataset, select the appropriate empirical
algorithm to use.

* Alternatively, use an a priori weather state identifier directly as an input in an
empirical algorithm.

Pros
* Explicitly accounts for the underlying conditional dependence that is missed when
disregarding this source of variability.

Cons

 What is the source of this independent, a priori cloud weather state? There is no
guarantee of their availability or consistency (e.g. ISCCP WS only presently extend to
2009 and are produced at a coarse spatial resolution.

 Where are you going to get all of the in situ observations to provide robust training
dataset for each and every single regime. Recall, many of the individual regime peak
relative frequency of occurrence are on the order of 20-30% over a small region!

* How do you ensure consistency of retrieved data a posteriori when coming from
multiple different algorithms?




Moving Forward — Option #2: Clear-sky empirical retrievals

*  First, passive microwave provide direct information on the clouds in the atmospheric FOV; hence we have several
geophysical products for cloud liquid water and precipitation.

* Second, from a radiative transfer perspective we expect the “signal” of atmospheric water vapor and temperature to be
contained in the “clear-sky” component of the observed brightness temperature.

* We propose to decompose the observed brightness temperature, TB_, , into its clear-sky and cloudy-residual
components, estimate TB_, using the passive microwave observations, remove its contribution and retrieve the surface

parameters:
TB,s = TBy + TBq
TB,4 = F(TB10HV,,, TB19HV , , TB22V ,, TB37HV ,, TB85HV )
(SST, U10, Qa, Ta,) = F(TB10OHV,, TB19HV, TB22V , TB37HV ,, TB85HV )
Pros
* Attempt to remove the confounding impact of
clouds

Binned Qa and Wspd vs. Clear-Sky simulated F15 TBs
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Moving Forward — Option #3: Physical Model-based Retrievals

e Studies such as Schulz et al. (1994) have show there is explicit dependence on lower-*layer*
guantities (e.g. lowest 500m) in passive microwave channels.

* If we empirically cloud correct the observed brightness temperatures — and trust that
correction — then we can design, iterative constrained linear or Bayesian inversion retrievals
based on the clear sky radiative transfer (e.g. with first-guess parameters).

Pros
* Directly tied to physical principles of remote sensing of atmospheric and surface parameters — not just a

statistical relationship

* Candirectly account for other uncertainties in the inversion problem including accounting for inter-sensor
differences: Earth incidence angles, Noisy sensors, etc.

* Provides a consistent framework for moving between passive microwave imagers and sounders.

* Can take advantage of extensive literature on optimization approaches

Cons
* Dependent on the accuracy of the TB_, estimates (unless of course you design to retrieve TBcld as well).

* Dependent on the physical sensitivity of the observations to the atmospheric layer properties.

* For example, if only 500m layers are able to be skillfully retrieved, then you still must estimate 10-m
values from that 500m layer quantity. However, this relationship may itself be more stable/less
conditionally dependent than the direct regressions.




Summary

* Global turbulent latent and sensible heat fluxed can be estimated reliability from passive
microwave satellite retrieved near-surface meteorology.

e Each of the primary avenues for estimating the near-surface meteorology can be posed in
terms of a “regression approach” in which the conditional expectation is being estimated in a
different manner.

* Empirical regression approaches — the current standard used in satellite-based turbulent
fluxes — exhibit strong regional biases in comparison to independent observational data.

These biases are strongly co-aligned with large-scale weather states.

 We have shown that the biases can directly result from strong underlying deviations of the
conditional (on weather state) distributions from the “pooled” distribution.

* We have proposed 3 specific paths forward and discussed pros and cons of each.

It is our conclusion that removing the cloudy-sky component for empirical
regressions or performing a more complete physical-model based retrieval
should be pursued.
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ISCCP Weather States
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