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National Security Space (NSS) presents multi-faceted S&T challenges. We must 

continually innovate enterprise and information management; provide decision support; 

develop advanced materials; enhance sensor technology; transform communication 

technology; develop advanced propulsion and resilient space architectures and capabilities; 

and enhance multiple additional S&T domains. These challenges are best met by leveraging 

advanced S&T research and technology development from a number of DoD agencies and 

civil agencies such as NASA.  The authors of this paper have engaged in these activities since 

2006 and over the past decade developed multiple strategic S&T relationships. This paper 

highlights the Office of the Space Missile Systems Center  (SMC) Chief Scientist (SMC/ST) 

collaboration with the NASA Office of Chief Technologist (NASA OCT), which has multiple 

S&T activities that are relevant to NSS.  In particular we discuss the development of the 

Technology Roadmaps that benefit both Civil Space and NSS. Our collaboration with NASA 

OCT has been of mutual benefit to multiple participants.  Some of the other DoD components 

include the Defense Advanced Research Projects agency (DARPA), Air Force Research 

Laboratory (AFRL), Naval Research Laboratory (NRL), The USAF Office of Chief Scientist, 

the USAF Science Advisory Board (SAB), Space and Naval Warfare Systems Command 

(SPAWAR), and a number of other services and agencies.  In addition, the human talent is a 

key enabler of advanced S&T activities; it is absolutely critical to have a strong supply of 

talent in the fields of Science Technology, Engineering, and Mathematics (STEM). 

Consequently, we continually collaborate with the USAF Institute of Technology (AFIT), 

other service academies and graduate schools, and other universities and colleges.  This paper 

highlights the benefits that result from such strategic S&T partnerships and recommends a 

way forward that will continually build upon these achievements into the future.  
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I. Enhanced Collaboration Driven by the 2010 United States National Space Policy (NSP) 
 

he 2010 NSP1 called for collaboration among international, commercial, civil, and national security space 

programs. This change in policy opened a wealth of collaboration opportunities, which will be discussed in this 

paper. Even prior to 2010, in 2006, the SMC Chief Scientist office collaborated with The Defense Advanced Research 

Projects Agency (DARPA) and served as the technical focusing agent for a number of efforts. This role involved 

serving on the government team of a number of programs, including System F62.  System F6 introduced independent, 

smaller, free-flying satellites (modules), which are interconnected via a wireless Internet Protocol (IP) network.  This 

innovation introduced robustness and flexibility into the space enterprise, as modules can come and go in and out of 

the satellite cluster. Again, IP serves to increase the resilience and flexibility of this advanced fractionated space 

architecture. One of the immediate results of the 2010 space policy was the decision of NASA and DARPA to 

collaborate on technical challenges of mutual interest. The Manned Geostationary Orbit (GEO) Servicing (MGS) 

study was one such collaboration that we contributed to, and it is the focus of the next section. 

 

 

 
 

Figure 1.  The DARPA System F6 Concept 

II. SMC-DARPA-NASA Collaboration - MGS 

Since S&T investments have come under financial pressure in recent years, these S&T challenges are best met by 

leveraging advanced S&T research and development of a number of DoD agencies, as well as civil agencies such as 

NASA.  The authors have engaged in these activities since 2006 and over the past decade developed and continually 

expanded multiple strategic S&T relationships.  In 2010, we supported a NASA-DARPA collaboration on Manned 

GEO Servicing (MGS) study31, which evaluated the concept of on-orbit human and robotic assisted servicing of 

T 



satellites in GEO orbit.  While NASA’s mission is scientific and focused on space exploration, DARPA’s mission is 

National Security Space (NSS).  NASA is considering sending human explorers to other planets, such as Mars.  Since 

GEO orbit is deeper in space than the low Earth orbit (LEO) where the International Space Station operates, MGS can 

advance human space exploration in understanding the challenges of operating in this different environment.  Some 

of the challenges include extended periods of life support (weeks to months to years), humans exposed to the increased 

radiation environment in GEO, and the challenging propulsion requirements required to transfer from LEO orbit to 

GEO orbit and back from GEO to LEO, a transfer which involves possible extended periods in the high radiation 

environment of the Van Allen belts, especially if Solar Electric Propulsion (SEP) is used.   

Since the NSS mission is capability focused, the NSS technical goals are to achieve on-orbit servicing at higher 

orbits and in particular within GEO.  However the NSS preference would more likely focus on robotic on-orbit satellite 

servicing.  This servicing would eliminate the daunting challenges of providing for extended periods of life support in 

high radiation environments.  However, dexterous servicing of challenging tasks is beyond the scope of today’s space 

robot technology.  Simpler tasks such as refueling or opening an appendage such as a stuck solar array are closer to 

current capability; although to our knowledge, such simple on-orbit servicing tasks have not yet been demonstrated.  

Complex tasks such as external repair would be even more challenging to demonstrate.  The most difficult tasks would 

involve repair of internal components.  This type of repair would require on orbit “robotic-surgery,” which would be 

among the most difficult tasks and well beyond the current state of the art. 

Subsequently, DARPA initiated the Phoenix program in order to further advance robotic on-orbit servicing 

capabilities.  SMC participated in some government team activities, which include proposal evaluation, transition 

planning, and overall program awareness.  The Phoenix program benefited from the NASA-DARPA investment in 

the MGS program.  In fact a number of the government team members such as the Naval Research Lab (NRL) have 

a key role within the program; in addition, this participation also leverages the previous DARPA investment in the 

Front-end Robotics Enabling Near-term Demonstration (FREND) program, which was performed by NRL.   

 

III. Collaboration with the NASA Office of Chief Technologist (NASA OCT) 

The NASA Office of Chief Technologist (NASA OCT) has multiple S&T activities that are relevant to NSS.  Our 

collaboration with NASA OCT has been of mutual benefit to multiple participants.  Our relationship with NASA OCT 

was further enhanced in 2014.  We share with NASA OCT some of our S&T plans and assist NASA in reviewing the 

Technology Roadmaps that OCT oversees.  Similar to our discussion of the NASA/DARPA MGS collaboration, there 

are common elements among the agencies especially within the pervasive S&T technologies, despite the fact that 

NASA has a science mission and the USAF has an NSS mission.  These include propulsion, fractionated space 

architectures, on-orbit servicing, space dynamics and proximity operations, satellite operations, and ground system 

architectures, to name but a few technology areas.  The next sections describe the NASA and SMC collaboration 

related to the area of Technology Roadmap development. 

  

 



 
 

Figure 2.  MGS Operational Concept 

 

IV. NASA Technology Roadmap Development and Prioritization 

NASA’s most powerful tools for achieving mission success are teamwork and collaboration. Each element within 

NASA brings unique experience and important expertise.  Consequently, when NASA began updating the NASA 

Technology Roadmaps, it encouraged participation by international, intergovernmental, academic, and industrial 

organizations. The NASA Technology Roadmaps are a set of documents that consider a wide range of needed 

technology candidates and development pathways for the next 20 years (2015-2035).  The roadmaps are one element 

of an integrated Agency-wide technology portfolio management process (Figure 3) that prioritizes technologies, tracks 

investments, facilitates decision making, and manages the technology portfolio.  

 

The effort to develop the Technology Roadmaps began in 2010 when NASA identified 14 space technology areas, 

which include the technologies that could enable NASA’s spaceflight missions and their associated technical 

challenges. The first set of draft roadmaps covered technologies for both human exploration and scientific discovery. 

The National Research Council (NRC) performed an independent critique of the roadmaps and recommended 

priorities (ref. NASA Space Technology Roadmaps and Priorities: Restoring NASA’s Technological Edge and Paving 

the Way for a New Era in Space, 2012). Using the NRC’s input, top-down strategic guidance from the Executive 

Office of the President via Executive Orders, the National Science and Technology Priorities, and the NASA Strategic 

Plan, the technologies were prioritized in the NASA 2013 Strategic Space Technology Investment Plan (SSTIP). 

NASA executed the comprehensive plan, investing in technologies that optimized the benefits of key stakeholders 

including NASA’s mission directorates, federal agencies, and the national economy.  



 
 

 

 

 

 

NASA hosted a Technical Interchange Meeting with 

invited professionals from academia, commercial 

industry, and other government agencies to gather input 

on NASA’s technology portfolio management process, 

including enhancement of the Technology Roadmaps and 

prioritization of future work. Informed by stakeholders, 

NASA created a new systematic process to update and 

enhance the Technology Roadmaps and prioritization of 

technologies. The process used in developing the 

Technology Roadmaps is shown in Figure 4 and outlined 

here. This process included evaluating planned and 

conceptual Design Reference Missions (DRMs) from 

each of NASA’s mission directorates. Using these DRMs 

and with support from NASA’s Human Architecture and 

Systems Maturation Teams, Science Decadals, and the 

Aeronautics Strategic Implementation Plan, NASA 

documented the capabilities needed to execute the 

Agency’s missions for the next 20 years. In addition, 

NASA evaluated capability gaps and identified potential 

technologies that could best achieve the desired 

capabilities. For each potential technology, the team 

documented the technology state of the art (SOA) and 

appropriate technology goals. 

 

 
Figure 4. 2015 NASA Technology Roadmap - Development Process 

Figure 3.  NASA Technology Portfolio 

Management Process 



The 2015 NASA Technology Roadmaps expand and enhance the original roadmaps, providing extensive detail about 

anticipated mission-capability needs and associated technology-development needs. These can be found at 

http://www.nasa.gov/offices/oct/home/roadmaps/index.html. 

The 2015 NASA Technology Roadmaps have 15 Technology Area (Figure 5). Each has an associated set of 

Technology Candidate Snapshots. The technology candidate is an individual technology nominee with the potential 

to support one or more planned or conceptual NASA Design Reference Mission(s). The Technology Candidate 

Snapshot includes the following information about the technology being considered:  

1. Technology, including a description, challenge, dependencies, state of the art performance level, and a 

technology performance goal;  

2. Capability needed, including a description, state of the art performance level, and a capability performance goal; 

and  

3. Mission linkages, including the launch date (if determined), the technology need date, and the estimated time to 

mature the technology.  

 

 
Figure 5.  15 Technology Areas in NASA’s 2015 Technology Roadmaps 

 

 

To ensure that NASA had appropriately identified the correct set of technology candidates, performance capabilities, 

and existing state of the art, NASA invited international partners, federal agencies, industry, and academy to provide 

input.  These organizations commented on the technology candidates and identified where collaboration on specific 

technology development activities would be most fruitful. NASA released a formal request for information, advertised 



in the Federal Register and Federal Business Opportunities, and sent letters soliciting input to ensure an understanding 

of the potential uses of NASA-developed technology by the broader space community.  The information collected 

was used during the update of the roadmaps and is being incorporated in the prioritization of the candidates. Currently, 

the new technology candidates that will help NASA achieve its extraordinary missions are listed in the 2015 NASA 

Technology Roadmaps.   

 

The updated 2015 Technology Roadmaps enhance and expand the 2012 Roadmaps by responding to NASA’s 

changing needs, advances in technology, and recommended improvements from the National Research Council and 

other stakeholders. The technologies outlined in these roadmaps focus on applied research and development activities 

and do not include basic research. These roadmaps include updates from Human Exploration and Operations, Science, 

and Aeronautics. Consistent with the NASA Strategic Technology Investment Plan, the Roadmaps will produce 

capabilities that accomplish NASA’s goals: to extend and sustain human presence and activities in space; to expand 

understanding of the Earth and the universe; to explore the structure, origin, and evolution of the solar system; to 

search for life past and present; and to energize the commercial space enterprise and extend benefits of space for the 

nation. 

 

The NASA technology candidates in the roadmap are a foundational element of NASA’s technology portfolio 

management process. However, there are many more technology candidates than NASA can afford. Consequently, 

the Agency must prioritize the candidates and identify those that provide the most benefit to NASA and the Nation. 

Today, this prioritization is documented in the Strategic Space Technology Investment Plan (SSTIP).  The SSTIP was 

created by NASA following careful review of the 2012 draft roadmaps by the National Research Council (NRC) and 

incorporated the recommended priorities from the NRC, combined with input from the public and key stakeholders. 

The SSTIP is being updated and is anticipated to be released in FY2017. With these technology priorities in hand, 

NASA uses a senior decision-making body, the NASA Technology Executive Council (NTEC), to make 

recommendations on NASA’s technology policy, prioritization, and strategic investments. This Council meets to 

evaluate the portfolio, weigh it against the priorities, identify gaps in needed capability and technical solutions, assess 

technical progress against capability needs, and identify strategies to grow new technical solutions. The technology 

investment plan coupled with the NTEC decisions directly impacts NASA technology investments internally through 

NASA’s budget process and externally through Requests for Information (RFI), Announcements of Opportunity (AO), 

NASA Research Announcements (NRAs), grants, fellowships, prizes, and challenges.  

  

V. SMC S&T Roadmap Development 

SMC supports the USAF Space Command (AFSPC) in the development of Science and Technology (S&T) 

roadmaps.  These efforts are done in parallel with the Core Function Support Plan (CFSP) development activity that 

S&T capabilities must support.  The S&T roadmaps focus on developing enabling technologies that must support 

future capabilities in AFSPC mission responsibilities, which include Space and Cyber.  The capabilities that we can 

best collaborate on with NASA are pervasive capabilities that support both agencies.   

 

In November 2014, SMC/ST met with NASA OCT in NASA-HQ.  At that meeting, NASA requested SMC/ST to 

assist NASA with S&T roadmap development.  On July 2015, a telecom occurred between the SMC/ST, selected 

attendees from AFRL/RV, and representatives from NASA’s Office of the Chief Technologist.  It was requested at 

that time by SMC/ST that NASA align its technology candidates to the top 70 Air Force technology need areas that 

had the best potential for collaboration.  The goal is that, ultimately, NASA and the Air Force Space and Missile 

Systems Center will be able to reach 2-3 technology need areas where there is strong potential for collaboration. These 

S&T areas include Solar Electric Propulsion (SEP), proximity operations, and on-orbit logistics. 

 

As NASA works with the Space and Missile Systems Center (SMC) to identify mutual areas of interest, the NASA 

Technology Roadmap technology candidates are instrumental in the discussion. The candidates enable very specific 

conversations about advancing state of the art to reach specific performance goals that address pervasive needs.  Using 

the roadmap candidates, the federal government can identify state of the art, current investments, and future needs. 

Federal employees can share information about existing partnerships and collaborations, contractors, and resources 

(e.g., personnel and facilities), thereby ensuring the Nation produces the greatest benefit using the taxpayers’ dollar. 

Additionally, the agencies can determine who is leading a specific technology development area and where future 

collaborations can be used to tackle difficult problems.   



 

SMC/ST conducted the effort in July and August 2015 (Assisted by SMC Advanced Systems Science and 

Technology – SMC/ADYT branch).  47 of 100 AFSPC tech needs appeared to correlate to 44 of 354 NASA tech 

needs.  The team identified 70 total matches -- each NASA or AFSPC tech need (TNs) can match to one or more of 

the other’s tech needs.  Of the AFSPC TNs that matched, 4 had no funding, 24 had partial funding, and 19 were fully 

funded.  237 NASA technology areas that do not correlate to AFSPC TNs may be useful to AFSPC; these are lower 

priority TNs that did not make the cut.  There were 73 NASA technology areas found to have little or no application 

to AFSPC needs.  SMC/MC (Milsatcom) and SMC/SY (Space Superiority) reviewed and agreed with results that were 

provided to NASA.    

 

Figures 6, 7, 8 below provide an illustration of both the breadth and fidelity of the S&T Crosswalk performed by 

SMC and NASA.  Figure 7 is a close-up showing some of the detail that cannot be observed in Figure 6. 

 

In order to complete this analysis NASA mapped each of the technology need areas identified in the spreadsheet 

provided by AFSPC into the appropriate NASA Technology Roadmap areas.  Then, individual NASA technology 

candidates were identified within those technology need areas where AF SPC believes there to be potential for 

collaboration.  A table was developed, listing each of the promising technology candidate number with its description.  

There are 264 technology candidates listed in the tables.  Figures 6, 7, 8 below present some of the mechanics to 

arriving at our S&T synergy recommendations.  With that feedback, NASA is able to call out the appropriate 

technology candidate snapshots for a more in-depth collaboration consideration. 

 

It should be noted that only some of the technologies in the 2015 NASA Technology Roadmaps are currently 

funded.  NASA is in the process of prioritizing all of its technology candidates in order to identify the most significant 

needs.  The AFSPC interests will be considered in that prioritization process, which will influence future funding 

consideration.  This effort provides the groundwork for a future S&T Forum in 2016 among NASA, AFSPC, and other 

agencies. 

 

 
 

Figure 6:  The Breadth and Fidelity of the Original S&T Crosswalk 
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12 1.2.2 RP/LOX Based   H

13 1.2.3 CH4/LOX Based      L

16 1.2.6 Fundamental Liquid Propulsion Technologies       M

27 1.4.1 Auxiliary Control Systems       M

28 1.4.2 Main Propulsion Systems H M

31 1.4.5 Health Management and Sensors H

53 2.1.1 Liquid Storable      M M

59 2.1.7 Micro-propulsion          H

61 2.2.1 Electric Propulsion      H M

83 3.1.3 Solar   H

88 3.2.1 Batteries         H

139 4.5.2 Activity Planning, Scheduling, and Execution  M L

145 4.5.8 Automated Data Analysis for Decision Making M M

161 5.1.3 Lasers    L

167 5.2.1 Spectrum Efficient Technologies    M M

168 5.2.2 Power Efficient Technologies    L

169 5.2.3 Propagation      L

172 5.2.6 Antennas    H

179 5.4.1 Timekeeping and Timing Distribution H

180 5.4.2 Onboard Auto Navigation and Maneuver   M

181 5.4.3 Sensors and Vision Processing Systems    L

182 5.4.4 Relative & Proximity Navigation   M L

201 5.7.1 Tracking Technologies           L H H H H M M L

202 5.7.2 Characterization Technologies           H

227 6.5.4 Space Weather Prediction L

228 6.5.5 Monitoring Technology    L

259 8.1.1 Detectors & Focal Planes  H H H

260 8.1.2 Electronics          H H H M H H H

261 8.1.3 Optical Components    M

262 8.1.4 Microwave, Millimeter-, and Submillimeter-Waves     L L M

267 8.2.2 Structures & Antennas      M

270 8.3.1 Field and Particle Detectors M

305 10.0 Nanotechnology         H

307 10.1.1 Lightweight Structures      M

313 10.2.1 Energy Storage  H

314 10.2.2 Energy Generation      M

315 10.2.3 Power Distribution           M

326 11.1.1 Flight Computing        H H H

355 12.1.1 Lightweight Structural Materials        M

372 12.3.5

Reliability, Life Assessment, and Health 

Monitoring     L

375 12.4.1 Manufacturing Processes    M

384 13.1.2

Automated Alignment, Coupling, Assembly, and 

Transportation Systems   M

385 13.1.3

Autonomous Command and Control for Integrated 

Vehicle and Ground Systems M

386 13.1.4 Logistics            L
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Figure 7:  A Close up Sample of the S&T Crosswalk 

 
NASA 
Need 

# 
AFSPC 
Need # 

Degree of 
Correlation NASA Title AFSPC Title 

1.2.2 384 H RP/LOX Based  
Oxygen-rich staged combustion engine technology development 
and demonstration 

1.2.3 384 L CH4/LOX Based  
Oxygen-rich staged combustion engine technology development 
and demonstration 

1.2.6 301 M Fundamental Liquid Propulsion Technologies  Combustion Stability Design Methods and Tools 

1.4.1 760 M Auxiliary Control Systems  Hydrazine replacement technology 

1.4.2 1014 H Main Propulsion Systems  Additive manufacturing technology maturation for launch vehicles 

1.4.2 1002 M Main Propulsion Systems  Light weight, low cost tank, vehicle, and fairing structures 

1.4.5* 1015 H Health Management and Sensors Launch Vehicle Health Management and Sensing Technologies 

 
 

Technology 
Area 
Snapshot 
Candidate 

Snapshot Candidate Technology Name  Snapshot Candidate Description  

2.2.1.7  
Miniature Hall Thruster  Hall thrusters are electrostatic thrusters that use a cross-field 

discharge described by the Hall effect to generate and accelerate 
the plasma.  

2.2.1.8  

Miniature Ion Thruster  Provide thrust by a variety of plasma generation techniques to 
ionize a large fraction of the propellant. High-voltage grids then 
extract the ions from the plasma and electrostatically accelerate 
them to high velocity at voltages up to and exceeding 10 kV.  

NASA 

Need #

AFSPC 

Need #

Degree of 

Correlation Funding Impact Activity Area

NASA 

Order #

AFSPC 

Order # NASA Title

8.1.1 1034 H Y H LD/MW 259 11 Detectors & Focal Planes  

5.2.2 587 L Y H COM-N 168 2 Power Efficient Technologies    

5.2.6 241 H Y E COM-N 172 8 Antennas    

8.1.4 587 L Y H COM-N 262 2 Microwave, Millimeter-, and Submillimeter-Waves     

5.7.1 1030 H Y H SSA & BA - SS 201 35 Tracking Technologies           

5.7.1 1031 H R M SSA & BA - SS 201 39 Tracking Technologies           

1.2.2 384 H Y H LRN 12 55 RP/LOX Based   

8.1.1 861 H G H LD/MW 259 10 Detectors & Focal Planes  

8.1.2 1019 H Y H per 260 87 Electronics          

4.5.2 1042 M R H C2 139 63 Activity Planning, Scheduling, and Execution  

4.5.8 1042 M R H C2 145 63 Automated Data Analysis for Decision Making

5.2.3 960 L G H COM-N 169 1 Propagation      

8.1.4 960 L G H COM-N 262 1 Microwave, Millimeter-, and Submillimeter-Waves     

8.1.4 241 M Y E COM-N 262 8 Microwave, Millimeter-, and Submillimeter-Waves     

1.4.5 1015 H R E LRN 31 60 Health Management and Sensors

2.2.1 761 H Y M LRN 61 50 Electric Propulsion      

3.2.1 714 H Y M per 88 99 Batteries         

8.1.1 702 H G M LD/MW 259 13 Detectors & Focal Planes  

8.1.2 737 H G H per 260 86 Electronics          

8.1.2 743 H G H per 260 88 Electronics          

8.1.2 736 M Y H per 260 89 Electronics          

8.1.2 732 H Y M per 260 90 Electronics          

8.1.2 750 H Y M per 260 91 Electronics          

10 964 H Y M per 305 100 Nanotechnology         

10.2.1 714 H Y M per 313 99 Energy Storage  

11.1.1 743 H G H per 326 88 Flight Computing        

11.1.1 750 H Y M per 326 91 Flight Computing        



2.2.1.9  
Resistojets  Resistojets use an electrically-heated element in contact with the 

propellant to increase the enthalpy prior to expansion through a 
nozzle.  

2.2.1.10  Arcjets  Arcjets use an electric arc to heat the propellant prior to expansion 
through a nozzle.  

2.2.1.11  

Variable Specific Impulse 
Magnetoplasma Rocket (VASIMR)  

VASIMR is a high-power radio frequency driven plasma thruster 
capable of I /thrust sp modulation at constant input power scalable 
over a broad range of power levels using efficient power 
processing units (PPUs) based on existing commercial radio 
broadcast technology.  

 
Figure 8:  Sample Need Areas Associated with NASA Technology Area 01: Launch Propulsion Systems 

 

 

NASA led discussions with the Thermal Protection Systems (TPS) experts from NASA, Office of the Under Secretary 

of Defense (OSD) for Acquisition, Technology and Logistics (AT&L), OSD Research and Engineering (R&E), AFRL 

- Materials and Manufacturing, and AFRL - Space Vehicles, the U.S. Army Aviation & Missile Research 

Development & Engineering Center (AMRDEC), and the Naval Surface Warfare Center. The organizations discussed 

current and future investments, critical needs, and potential areas of collaboration. The first meeting spawned a number 

of activities, including the identification of possible test equipment for collaborative use and multiple site visits. As a 

result of this effective and collaborative environment, there were substantial results, including the joint development 

of a training course for new TPS engineers and a NASA-Army collaboration on further development of 3-D woven 

carbon-carbon material produced by NASA’s Heatshield for Extreme Entry Environment Technology (HEEET) 

project (See Figure 9). With Army support, NASA’s HEET project was able to conduct exploratory testing using the 

DoD Arnold Engineering Development Center (AEDC) facility. Additionally, The U.S. Army executed a contract to 

further develop the TPS material using the approach pioneered by NASA, which has the potential to reduce fabrication 

cost and shorten schedule time. The Army considers this technology to be a breakthrough, one that enables systems 

design. In turn, NASA partnered with AMRDEC to create a materials database that supports both organizations.  OSD 

AT&L considers the new coalition to be so successful that they have requested additional meetings to identify other 

opportunities for technological collaboration.  

 

  

    
Figure 9. NASA Heat Shield for Extreme Entry Environment Technology (HEEET) ---NASA may benefit from 

Army’s work 

 

 

VI. S&T Partnership Forum Collaboration 

The Science and Technology (S&T) Partnership Forum is a strategic forum established to identify synergistic efforts 

and technologies.  It is chaired by the Chief Scientist from Air Force Space Command (AFSPC) and has three lead 

Agencies: Air Force (AF), NASA, and other agencies.  Additionally, the forum has participation from the OSD R&E, 

Naval Research Laboratory (NRL), DARPA, and the National Oceanic and Atmospheric Administration (NOAA).  



The forum has a near-term goal of actively working to crosswalk NASA-AF-other agencies roadmaps to identify 

opportunities for synergy and collaboration in technology investments.  The forum will develop a strategy to produce 

a joint roadmap that focuses on a mutually beneficial long-term goal.  The S&T Partnership Forum is accomplishing 

this strategy development through personnel exchange (e.g., AFRL has been on detail to NASA Headquarters, Office 

of the Chief Technologist, traveling to NASA HQ monthly).  Additionally, the forum has held multiple technical 

interchange meetings (TIM).   

 

One TIM was held to identify pervasive technologies that would provide the first opportunity for a detailed crosswalk.  

NASA hosted this TIM, where the S&T Partnership Forum generated 16 technology topics.  These topics were 

prioritized within each Agency based on their own criteria, and then integrated and prioritized across the agencies by 

identifying topics that provided mutual benefit and potential for future collaborative work. These include small 

satellite technology development, big data analytics, in-space assembly, cybersecurity and assured access to space. 

 

To pilot the development of an integrated roadmap, in June 2016 the S&T Partnership Forum chose to focus on one 

area: small satellite technology, with a focus on developing miniaturized sensing capabilities for cube-sat and small-

sat platforms. Miniaturized operational sensors can form a resilient source of data. Additionally, they can be gap fillers 

in space architectures because sensors on all tactically-responsive spacecraft could be easily adapted to reconfigurable 

constellations. In July 2016, the forum members met to report on current investments in the area of small satellite 

miniaturized sensors: optical, energetic charged particle, electromagnetic, local spacecraft environment, and sensor 

web technologies.  The goal was to identify key sensor technologies with the most cross-agency impact (e.g. weather 

sensor, space environment sensor, optical sensors, etc.).  Later the organizations will work to develop an integrated 

technology roadmap and coordinate work in this area. Progress on this activity was briefed at the 30th Annual Small 

Satellite Conference, August 11, 2016 at Logan, Utah.  The S&T Partnership Forum will report their progress at the 

AF-NASA and other agencies Summit in Washington D.C, December 2016.  Taking feedback from senior leadership, 

the S&T Partnership Forum will continue with the development of the roadmaps, looking for opportunities to leverage 

investments, collaborate, and build a strong national technology development capability. 

 

VII. Solar Electric Propulsion (SEP) 

 

As indicated above, most space missions could greatly benefit from the enabling technology of high output solar 

arrays, combined with powerful, more efficient electric propulsion (top NASA technology priorities:  launch 

propulsion and in-space propulsion).  Future solar arrays could provide output over 100 kW and advanced solar electric 

propulsion systems can significantly improve launch enterprise architectures and performance35. This AIAA Space 

2014 paper demonstrates how the SMC launch enterprise can be re-imagined by using a LEO orbit as the standard 

injection orbit, using the SEP-powered spacecraft to complete the transfer to all higher mission orbits. This is depicted 

in Figure 10 below.  SEP-powered spacecraft eliminate considerable mass from chemical propulsion fuels and 

oxidizers that traditional spacecraft currently required for orbital transfer.   

 

Significant potential benefits include: 

 

1) Downsizing spacecraft and launch vehicles 

 

2) Lowering fleet-wide architecture costs: smaller boosters, dual launching, and possibly launching all vehicles from 

a single launch site 

 

3) Increased maneuverability 

 

4) Increased resiliency (“graceful” failure mode with multiple SEP engines) 

 

5) More efficient and effective constellation management 

 

6) Providing extra power and enabling enhanced payload capability and performance 

 

7) Enhanced end-of-life options (possible de-orbit) and reduced orbital debris 



 

8) Enabling larger launch windows 

 

9) Enabling previously infeasible/impractical missions:  maintaining unstable orbits or ground tracks and dynamic 

orbit change flexibility (high number of orbit changes and repositions) 

 

The paper lists much more information and performance parameters, with a specific focus on the SMC mission set.  

SEP technology is likely to enhance the capabilities of many space enterprises, including NASA’s.  Examples  include 

the MGS study (discussed above), as well as other civil, commercial, and international space missions. 

 

 
 

 

Figure 10:  LEO Transfers to Mission Orbits Enabled by Solar Electric Propulsion – Allow for Mix-Manifesting, 

Enabled by Common LEO Injection Orbit 

VIII. USAF AFRL Collaboration 

SMC works with Air Force Research Laboratory (AFRL) on many topics.  These topics include space-cyber, 

Quantum Key Distribution (QKD), Carbon Nanotubes (CNT), propulsion, Space Situational Awareness (SSA), and 

more. One example of this collaboration is on Small Business Innovative Research (SBIR) projects.  SMC provides 

AFRL with S&T topics of interest to SMC missions.  In many cases SMC supports AFRL in technical oversight of 

such projects.  Example projects include space High Assurance IP Encryption (HAIPE) for small satellites and QKD 

projects, among others.  SMC personnel participate in design reviews and project milestone decisions as appropriate.  

This activity tightens the deliveries of SBIR results to AFSPC and SMC needs, and enhances the probability of 

successful transition to capabilities.  Other S&T collaborative activities include big data and cloud computing.  SMC 

recently supported AFSPC and AFRL portfolio reviews for both space and cyber.  AFSPC, SMC, and AFRL used 

these results in order to evaluate promising technologies for the SMC Materiel Innovation Working Group (MIWG) 

and other collaborations.   

 

IX. Additional Government Collaboration Partners 

In addition to NASA, DARPA, and Naval Research Laboratory (NRL), the SMC Chief Scientist Office 

collaborates with a number of organizations, such as The USAF Office of Chief Scientist (USAF/ST), the USAF 

Science Advisory Board (SAB), the AFSPC Independent Strategic Assessment Group (ISAG), Space and Naval 

Warfare Systems Command (SPAWAR), and a number of other services and agencies.  In particular, SMC contributed 

to the USAF Cyber Vision 2025 (CV 2025), which was published in 201217.  SMC and AFSPC provided key concepts 

and contributions to the space-cyber component of the USAF CV 2025.  These initial contributions, made in 

conjunction with AFSPC and AFRL, are guiding the USAF in the development of future space and cyber capabilities. 



The document that results from SMC and AFSCP’s efforts, “Cyber Enhanced Space Operations (CESO),” is discussed 

in more detail elsewhere32.  As we endeavor to better integrate the space mission with the cyber mission, SMClooks 

forward to enhancing all these USAF guidance documents. 

 

The USAF Rapid Innovation Funding (RIF) program is another program that focuses on the transition of S&T into 

capabilities. The USAF RIF program is targeting promising S&T results and assists in S&T’s successful transition 

across the “Valley of Death” into actual space capabilities.  The USAF RIF program is overseen by USAF/AQR 

(USAF Acquisition – Science, Technology, and Engineering), and the SMC Chief Scientist serves as the lead 

Technical Evaluator for Program Executive Officer (PEO) Space topics.  The USAF RIF program looks to make small 

investments ($3M or less) in S&T results that can transition to fielded capabilities within 2 years.  Such topics include 

IP-enabled encryptors for small satellites, carbon nanotube harnesses, and other topics.  In most cases these are 

activities taken on by small, athletic S&T companies.  In many cases RIF builds on SBIR (Small Business Innovative 

Research) projects.  The SBIR program is also overseen by AF/AQR, and SBIR Space solicitation topics are 

recommended by SMC.  AFRL is involved in the execution of SBIR programs, with support from SMC as appropriate. 

The collaboration among these government organizations leverages small investments to best serve the users of these 

systems. 

X. Investment in Our Future Talent – Cultivation of STEM Talent 

Human talent is a key enabler of advanced S&T activities.  It is absolutely critical to have a strong supply of talent in 

the fields of science, technology, engineering, and mathematics (STEM).  We continually collaborate with the USAF 

Institute of Technology (AFIT), other service academies and graduate schools, and other universities and colleges.  

SMC sponsors research topics for AFIT and are involved in a number of other STEM activities.  For example, 

Aerospace and SMC support technical activities at Harvey Mudd College (HMC).  These activities include leading 

the HMC Engineering Visitors Committee, sponsoring annual capstone projects (Engineering Clinics), and service on 

the HMC Clinic Advisory Committee.  These activities grant us the opportunity to mentor STEM talent and provide 

stewardship advice to educational organizations.  Some of the technical capstone projects that we led include: intrusion 

detection, mobile phone cyber, grid computing, network and enterprise management, orbital analysis, graphical 

enhancements, and remote monitoring and Internet Engineering34. The technical infusion of talent to the workforce is 

a key contribution to the ability of SMC to manage the development and acquisition of innovative space programs. 

 

XI. Way Forward and Conclusions 

This paper highlights the benefits that result in from strategic S&T partnerships and recommends a way forward 

to continually build upon these achievements into the future.  Going forward, SMC and collaboration agencies 

continue to leverage several collaborations into a consistent progress in S&T innovation and transition to capability.  

For example, the SMC and NASA S&T collaboration created synergies, the SMC participation in the DARPA F6 

program enhanced SMC’s position with respect to IP-enabled and fractionated space architectures.  SMC’s leadership 

within the Malware Technical Exchange Meeting (MTEM) enhanced the NSS position with Space cyber, as did 

SMC’s contributions to the USAF CV 2025 study.  SMC’s leadership of the USAF RIF program enabled successful 

transition of a number of key S&T capabilities to the space enterprise, such as small satellite encryptors and carbon 

nanotube harnesses that are lighter than traditional harnesses.  SMC’s and AFSPC’s work with NASA and DARPA 

generated a number of synergies for both on orbit servicing and launch technologies.  STEM education and 

collaboration on a variety of pervasive S&T areas are of great benefit in building our talent pool.  Our experimental 

work on the F6 Tech Package enabled deeper understanding of the hosted payload architectures, as well as space-

cyber situational awareness and related research.  

 

As NASA works with the Space and Missile Systems Center (SMC) to identify mutual areas of interest, the NASA 

Technology Roadmap candidates are instrumental in the discussion.  The technology candidates enable very specific 

conversations about advancing state of the art to reach specific performance goals that address pervasive needs.  Using 

the roadmap technology candidates, the federal government can identify state of the art, current investments, and 

future needs.  Federal employees can share information about existing partnerships and collaborations, contractors, 

and resources (e.g., personnel and facilities), thereby ensuring the Nation produces the greatest benefit using the 

taxpayers’ dollar.  Additionally, the Agencies can determine who is leading a specific technology development area 

and where future collaborations can be used to tackle difficult problems.  

 



The goal of achieving optimal collaboration is to compare AFSPC and NASA technology needs (TNs) at a top 

level in order to determine:  Which TNs are similar and which NASA TNs may be useful to AFSPC when there are 

no similar AFSPC TNs? These question will help us prepare for future studies to determine how NASA and AFSPC 

can leverage and collaborate on technology development programs and road mapping efforts.  Exploring these 

questions has already led to some groundwork for a future S&T Forum in 2016 among NASA/AF and other agencies.  

The details of this work are provided in the opening paper of this session36.   

 

SMC would like to continue to grow the S&T collaboration between NASA and SMC, as well as with other 

agencies.  The synergy that S&T activity affords us will likely reduce our overall investments while also increasing 

the outcomes for multiple agencies going forward. 
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