

Tolerancing, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assembly

Brian Primeau, Michael Chrisp, Gregory Balonek, Christian Chesbrough, James Andre, Kristin Clark

This work is sponsored by the National Aeronautics and Space Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Transiting Exoplanet Survey Satellite (TESS)

TESS Goal: Find the *Nearest Earth-Like* Planets

- NASA Explorer Mission
 - August 2017 Launch
 - 2 year mission
 - \$228M Mission Cost

TESS is a complementary, logical follow-on to Kepler and pre-cursor to James Webb Space Telescope (JWST) spectroscopy of exoplanets

TESS Instrument Overview

Camera Structure Assembly (CSA)

- Four wide field-of-view cameras with flexure mounts
- Camera Plate Assembly
 - Camera Plate
 - Bipods
 - Purge Manifold
- Electrical and thermal harnesses

- Detector Assembly
 - Dedicated Focal Plane Electronics
 - CCD focal plane 4096x4096 pixels
- Lens Assembly
 - 24° x 24° FOV (>90% sky coverage)
 - 146 mm focal length f/1.4
 - Optimized over 600-1000 nm
- Lens Hoods (12°, 36°)
 - Reduce scattered light
 - Thermal radiator

- Highly Elliptical Orbit provides extremely stable thermal environment
 - Attitude change for data downlink creates a temperature pulse
- Wide field-of-view and step stare observing provide near full sky coverage
 - Science orbit instrument pointing fixed in inertial space

Optical Design Overview

Lens Assembly

- 24° x 24° FOV
- 146 mm, f/1.4 lens
 - EPD = 105 mm
- 7 elements
 - Two aspheric surfaces
- Optimized over 600-1000 nm

Lens Assembly Design Tolerances

Specification / As-Built RRU

L e n s	Sur.	Fringes (power)	Fringes (irregularity)	dN (melt comp.)	dV (melt comp.)	Lens wedge (ETD μm)	Lens thickness (µm)	Axial position (μm)	Radial decenter (µm)	Lens tilt (arc min)
1	1	3 / 0.52	0.5 / 0.28	±0.00004	±0.02%	5 / 3	±25 / +20	±35/0	20/4	0.40 / 0.29
	2	3/0.67	0.5 / 0.33							
2	3	3 / 0.07	0.5 / 0.22	±0.00004	±0.02%	5/3	±25 / +9	±35 / -13	20/3	0.40 / 0.25
	4	3 / 0.62	0.5 / 0.16							
3	6	3 / 1.95	0.5 / 0.16	±0.00004	±0.02%	10 / 5	±50/-10	±35 / +18	20 / 9	0.40 / 0.32
	7	3 / 1.50	Asp							
4	8	3 / 1.20	0.5 / 0.43	±0.00004	±0.02%	5/3	±25 / +23	±35 / -13	20 / 2	0.40 / 0.29
	9	3 / 1.70	0.5 / 0.23							
5	10	3 / 0.00	0.5 / 0.14	±0.00004	±0.02%	5 / 5	±25 / +18	±35/+3	20/3	0.40/0.38
	11	3 / 2.00	0.5 / 0.25							
6	12	3 / 1.50	Asp	±0.00004	±0.02%	10/5	±50/-36	±35 / -23	20/1	0.40 / 0.05
	13	3 / 1.80	0.5 / 0.20							
7	14	3 / 1.50	1/0.46	±0.00004	±0.02%	5/0	±25 / +13	±35/0	20 / 7	0.40/0.15
	15	3 / 0.07	1/0.07							

ETD – maximum edge thickness minus minimum edge thickness (TIR) Fringes power and irregularity – difference from test plate @ 632 nm dN – refractive index difference, dV- Abbe number change

Surface 7 Asphere Tolerance: less than 0.07 microns peak to valley over any 14mm diameter subaperture (RRU met spec). Surface 12 Asphere Tolerance: less than 0.05 microns peak to valley over any 17mm diameter subaperture (RRU met spec).

Expected BPFF15 with tolerances

Expected performance (84% probability)

Fabrication and Alignment Procedure

- Catalog index and dispersion data does not extend to -75C
- NASA Goddard Cryogenic, High Accuracy Refraction Measuring System (CHARMS) capable of measuring refractive index of materials down to 10K

Cryogenic Refractive Indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses

Kevin H. Miller,1 Manuel A. Quijada, and Doug Leviton

Goddard Space Flight Center, 8800 Greenbelt Road Greenbelt, MD 20771;

ABSTRACT

The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder, whose principal goal is to detect small planets with bright host starts in the solar neighborhood. The TESS payload consists of four identical cameras with seven optical elements each that include various types of Ohara glass substrates. The successful implementation both panchromatic and thermal lens assembly designs for these cameras requires a fairly accurate (up to 1E-6) knowledge of the temperature and wavelength dependence of the refractive index in the wavelength and temperature range of operation. Hence, this paper is devoted to report on measurements of the refractive index over the wavelength range of 0.42—1.15 um and temperature range of 110—310 K for the following Ohara glasses: S-LAH55, S-LAH55V, S-LAH55, S-LAH5, S-NBM1, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed utilizing the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA's Goddard Space Flight Center. A dense coverage of the absolute refractive index for the title substrates in the aforementioned wavelength and temperature. A comparison of the measured indices with literature values, specifically the temperature-dependent refractive indices of S-PHM52 and S-TIH14, will be presented.

Keywords: S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, S-TIH14, CHARMS, cryogenic refractive index

TESS Lens Assembly Build

Lens Build: Lens Preparation

RRU Lens Assembly Build – Pathfinder for Flight Build

Lens Edge Preparation

Lens Build: RTV Pad Fabrication

Mix

Press

Cut

Cure

Lens Build: Lenses With RTV Pads

Fit Check

Pad Prep

Pad Cure

Pads on Lens

Lens Build: Lenses in Bezels

Bezel Check

Lens Placement

Lens in Bezel Runout

Lens Build: Lens Thermal Cycling

L1, L2, L3, L4 Mounted for Test

Thermal Blankets

Cover (Dog-House) Installed

Thermal Chamber

Lens Alignment

Trioptics Lens Assembly Station

- Non-contact measurement of lens alignments
- Procedure details developed during RRU build
- Uncertainty in lens alignment: 2 microns in decenter and 1 micron axial displacement

Lens Build: Barrel Assembly and Alignment

Lens install

Upper Barrel

Lower Barrel Complete

Lens Complete

TESS Optical Test

- Focus interferometer at focus of TESS, and return using large flat in object space
- Translate interferometer along focal plane, and follow return with large flat tilt
 - Track interferometer location with respect to TESS lens, and track return flat angle with theodolite
- Take interferometric data across FOV and through focus

RRU Ambient Interferometry

On axis, ± 10mm (3.9°) Wavefront Maps

CODE V 'ALI' used to calculate compensator adjustments

Lens 1 and Focal Plane positions

	Wave	length	= 632.8	nm.					
			Field	Number	RMS wavefro	nt dif	ference		
	Zoom	Field	weight	of rays	pre-align	post	-align		
	1	1	1.000	7796	1.7191	0.	3162		
	1	2	1.000	7501	1.2751	0.	3609		
	1	3	1.000	7397	1.2765	0.	3555		
	1	4	1.000	7733	1.5489	0.	2716		
	1	5	1.000	7665	1.5772	0.	2664		
	1	6	1.000	7175	1.4138	0.	3829		
	1	7	1.000	7421	1.4722	0.	3229		
	1	8	1.000	7580	1.5710	0.	1865		
	1	9	1.000	7520	1.4906	0.	3257		
	1	10	1.000	7766	1.7190	0.2714			
	1	11	1.000	7765	1.7415	0.	2596		
	1	12	1.000	7414	1.6074	0.	3016		
	1	13	1.000	7505	1.5784	0.	2160		
	TOT	TAL			1.5470	0.	2995		
			Compensa	ator	Compens	ator	RMS (a)	RMS (b)	
			type	е	valu	e	difference	contribution	
			* DLZ S	516	0.45941E-	01	0.3055	1.5177	(focus
			** DLA 9	516	68563E-	04	1.5471	0.0222	(image
til	t)								-
			** DLB 3	S16	0.17755E-	03	1.5470	0.0562	(image
til	t)								
(a)	TOTAI	L RMS	wavefront	differenc	e assuming o	nly on	e compensat	or is active	

Focal Plane Only

(b) TOTAL RMS wavefront error introduced by the one compensator

Focal Plane and Lens 1

Way	velength	= 632.8	nm.					
		Field	Number	RMS wavefror	it di	fference		
Zoon	n Field	weight	of rays	pre-align	pos	t-align		
1	1	1.000	7796	1.7191	0	.1962		
1	2	1.000	7501	1.2751	0	.2935		
1	3	1.000	7397	1.2765	0	.3072		
1	4	1.000	7733	1.5489	0	.1818		
1	5	1.000	7665	1.5772	0	.2137		
1	6	1.000	7175	1.4138	0	.3129		
1	7	1.000	7421	1.4722	0	.2562		
1	8	1.000	7580	1.5710	0	.2057		
1	9	1.000	7520	1.4906 0.2033		.2033		
1	10	1.000	7766	1.7190	0	.2317		
1	11	1.000	7765	1.7415	0	.2134		
1	12	1.000	7414	1.6074	0	.3367		
1	13	1.000	7505	1.5784	0	.2146		
TC	TAL			1.5470	0	.2477		
		Compensa	tor	Compensa	tor	RMS (a)	RMS (b)	
		type		value	2	difference	contribut	ion
		DSZ S	12	19731	#	0.2872	1.5353	
		DSX S12		14719E-0	1	1.5453	0.0587	
		DSY S	12	0.35073E-0	1	1.5428	0.1394	
		* DLZ S	16	49821E-03		1.5631	0.0165	(focus)
		** DLA S	16	27759E-0	13	1.5492	0.0900	(image tilt)
		** DLB S	16	0.82665E-0	4	1.5467	0.0262	(image tilt)

(a) TOTAL RMS wavefront difference assuming only one compensator is active (b) TOTAL RMS wavefront error introduced by the one compensator # Compensator has been damped to avoid exceeding maximum value

Did not adjust Lens 1 since performance predictions met BPFF specification with only focus adjustment.

SS Transiting Exoplanet Survey Satellite

Extra Slides

This work is sponsored by the National Aeronautics and Space Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Transit Method

- Discover transiting earths and super earths
 - Orbiting bright, nearby stars
 - Rocky planets and water worlds
 - Habitable planets

Habitable Zone

- With a 2 year mission duration, TESS is expected to discover:
 - 30 Earth-sized planets
 - 10-20% inside the habitable zone
 - 20-30% inside JWST's Continuous Viewing Zone
 - 300 Super-Earth (2·R_E) planets
 - Tens of thousands of larger planets

Instrument Level Overview

Camera Plate

STOP Modeling Process

Imaging Performance on Orbit

Ensquared Energy =18%

TESS Imager

Parameter	Requirement
CCD	2 x 2 detector arrays
Detector Array	2048 x 2048
Pixel Size	15 microns
CCD Active Area Size	63.482 mm x 63.482 mm
CCD active area diagonal semi-height	44.88 mm

TESS Imager Summary

•	2048 x 2048 frame-transfer format, (2k x 4k CCD) 15-μm pixels										
	Performance	Value	Achieved								
	Well Capacity	> 150,000 e- (goal)	> 190,000 e-								
	Conversion Gain	< 10 µV/e-	7 μV/e-	Packaged CCID-80							
	Read Noise @ 625 kHz	< 20 e-	< 14 e- w/FPE	Imager							
	Dark Current @ -30°C	< 8 e-/pix/sec	< 2.5 e-/p/s	Correction of the second se							
	Device Thickness	100 μm (-10/+15μm)	95 – 115 μm	Prototype Detector							
	Depletion-depth control	Substrate bias	Functional	Assembly							
	Targeted Spectral Range	600-1000 nm	70% @ 950 nm								

Lens Assembly Design Tolerances

L e n s	Sur.	Fringes (power)	Fringes (irregularity)	dN	dV	Lens wedge (ETD mm)	Lens thickness (mm)	Axial position (mm)	Radial decenter (mm)	Lens tilt (arc min)
1	1	3	0.5	±0.00004	±0.02%	±0.005	±0.025	±0.035	±0.020	±0.4
	2	3	0.5					comp.	comp.	
2	3	3	0.5	±0.00004	±0.02%	±0.005	±0.025	±0.035	±0.020	±0.4
	4	3	0.5							
3	6	3	0.5	±0.00004	±0.02%	±0.010	±0.050	±0.035	±0.020	±0.4
	7	3	Asp							
4	8	3	0.5	±0.00004	±0.02%	±0.005	±0.025	±0.035	±0.020	±0.4
	9	3	0.5					comp.		
5	10	3	0.5	±0.00004	±0.02%	±0.005	±0.025	±0.035	±0.020	±0.4
	11	3	0.5							
6	12	3	Asp	±0.00004	±0.02%	±0.010	±0.050	±0.035	±0.020	±0.4
	13	3	0.5							
7	14	3	1	±0.00004	±0.02%	±0.005	±0.025	±0.035	±0.020	±0.4
	15	3	1					comp.		

ETD – maximum edge thickness minus minimum edge thickness (TIR) Fringes power and irregularity – difference from test plate @ 632 nm dN – refractive index difference, dV- Abbe number change

Surface 7 Asphere Tolerance: less than 0.07 microns peak to valley over any 14mm diameter subaperture. Surface 12 Asphere Tolerance: less than 0.05 microns peak to valley over any 17mm diameter subaperture.

RRU As-Built Fabrication + Alignment Results

Lens-Serial#	Sur.	Fringes (power)	Fringes (irregularity)	dN, dV*	Lens wedge (ETD mm)	Lens thickness (mm)	Axial position (mm)	Radial decenter (mm)	Lens tilt (arc min)
1-SN3	1	0.52	0.281	Comp.	0.003	+0.020	0	0.0042	0.285
	2	0.67	0.329						
2-SN10	3	0.07	0.221	Comp.	0.003	+0.009	-0.013	0.0032	0.252
	4	0.62	0.156						
3-SN1	6	1.95	0.156	Comp.	0.005	-0.010	+0.018	0.0093	0.323
	7	1.50	Asp**						
4-SN2	8	1.20	0.433	Comp.	0.003	+0.023	-0.013	0.0020	0.288
	9	1.70	0.227						
5-SN1	10	0.00	0.143	Comp.	0.005	+0.018	+0.003	0.0031	0.378
	11	2.00	0.250						
6-SN3	12	1.50	Asp**	Comp.	0.005	-0.036	-0.023	0.0013	0.052
	13	1.80	0.200						
7-SN1	14	1.50	0.464	Comp.	0.000	+0.013	0	0.0068	0.153
	15	0.07	0.069						

Fabrication and alignment results good to a fraction of tolerance allocation! Compensation of Lens 1 and barrel-to-barrel spacing were not necessary. Qual/Flight goal is to build to the above tolerances and avoid difficult and time intensive interferometric active alignment.