

Extravehicular Activity (EVA) Tools

A. Drew Hood EVA Tools Project Manager

Purpose and Outline

- Purpose: Provide an overview of existing EVA tools development.
- Outline
 - The Team
 - Flight Hardware
 - Z2 Tool Integration
 - EVA HH&P Benchmarking Study
 - Microgravity NExT
 - Integrated Testing
 - Current Exploration Tools Work

EVA Tools and Equipment

- The team is comprised of employees at NASA JSC working in the Tools, Equipment and Habitability Systems Branch of the Crew and Thermal Systems Division.
- The team houses Project Managers, Project Engineers, and ISS EVA Tools System Management that develop Flight Hardware for ISS and lead early development of Exploration focused tools.
- Exploration EVA Tool Development
 - The goal is to use a lean funding model to develop and test hardware in support of Operations Concept formulation at the program level AND becoming "smart buyers" for future Flight Hardware development.
 - Hardware development guided by EVA System Maturation Team (SMT) Gap List
 - Methodology:
 - Rapid development cycles
 - Focus on functionality
 - Low cost solutions

Flight Hardware

- EC7 houses project managers with experience developing and certifying Flight hardware.
- Previous project
 - Articulating Portable Foot Restraint (APFR)
 - Body Restraint Tether (BRT)
 - Contingency Operations LAPA Tool (COLT)
- Recent projects
 - EVA GoPro
 - Dual Tether Points
 - EVA Inspection Mirror
 - EVA Cap Keeper
- Current Projects
 - Alpha Magnetic Spectrometer (AMS) Repair Tools

Z2 Tool Integration

- The Z2 spacesuit will be tested in the NBL in order evaluate it's mobility.
- To enable a high fidelity simulation a Modular Mini Workstation (MMWS) is being integrated onto the suit.
- Due to differences between the Z2 and the EMU, positioning, sizing, and mounting locations had to be modified.

EVA HH&P Benchmarking Study

- Collaborating with colleagues in Human Health and Performance (HH&P) Directorate on EVA HH&P Benchmarking Study.
- Tasked with designing, building, and testing a reconfigurable EVA circuit for micro and partial gravity.
- Structure will enable repeatable testing of tasks with different suits in different gravity environments.

Micro-G NExT

- The Micro-G Neutral Buoyancy Experiment Design Teams (Micro-G NExT) Program challenges undergraduate students to propose, design, build, and test a tool that addresses an authentic, current space exploration problem.
- Enables the EVA tools team to crowdsource tool concepts during the prototyping phase.
- Teams are self-funded for tool development and travel.
- The JSC EVA Community supports the program by reviewing proposals and volunteering as team mentors.
- The first 2 years of the program produced 43 unique tools.
- Micro-G 2017 was announced Aug 24 (<u>https://microgravityuniversity.jsc.nasa.gov</u>).

Micro-G NExT

Testing

- Work with colleagues across the center to utilize the appropriate testing facilities for each level of our EVA tool development.
- Current test environments
 - Neutral Buoyancy Laboratory (NBL)
 - Aquarius Habitat, Islamorada, FL
 - NEEMO 15, 16, 18, 19, 20, 21
 - SEATEST II
 - Advanced Materials Lab (AML)
 - Thermal/Vacuum Chambers
 - Active Response Gravity Offload System (ARGOS)
- Previous test environment
 - Flagstaff, Arizona
 - Desert RATS 08, 09, 10, 11
 - Building 9, JSC
 - RATS 12

Current Exploration Work

- Developing tools for geology sampling and curation on Small Bodies, primarily focused on missions such as the Asteroid Redirect Crewed Mission (ARCM).
- Working requirements derived from Exploration EVA knowledge gaps.
 - EVA SMT Gap List
 - CAPTEM Findings
- Development effort is integrated with relevant EVA stakeholders.
 - Scientists (XI)
 - Engineers (EA)
 - EVA Operations (CX3)
 - Crew Office (CB)

ICES 2016 - A Geology Sampling System for Small Bodies @ http://hdl.handle.net/2346/67698

Small Bodies

- **Definition:** Non-planetary bodies such as asteroids and comets.
- Microgravity to milligravity
- Why Small Bodies?
 - Hold key information about formation of solar system
 - Help understand origin of life
- History of Small Body Exploration
 - 11 robotic missions to date
 - 2 have attempted retrieving samples (Hayabusa, Rosetta)
 - Hayabusa successfully returned 1mg of sample to Earth
 - Rosetta unsuccessful at obtaining sample
- Planned/In Progress Sampling Missions
 - Hayabusa 2
 - Launch Dec 2014
 - Arrival Jul 2018
 - OSIRIS-Rex
 - Launch Sept 2016
 - Arrival Aug 2018

Asteroid Itokawa Credit: JAXA Hayabusa Mission

Comet 67P/Churyumov– Gerasimenko Credit: ESA Rosetta Mission

12

Sampling of Small Bodies

- Humans have never performed geological sampling in microgravity.
- Robotic mission collection techniques can provide design inputs.
 - Hayabusa 2 small impactor will be launched into surface, regolith will be ejected and captured in sample catcher.
 - OSIRIS-REx compressed gas will be shot into the surface, stirring up regolith, which will then be captured in small bins.
- Human missions can increase the amount and variety of collected samples.
- Lessons learned are applicable to any Small Body mission, including those to Phobos or Deimos.

OSIRIS-REX TAGSAM Sample Collection Device

Science Requirements

 In support of ARM, the Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM) released a list of scientific objectives, or Findings. The subset below has been used to drive tool design requirements.

Finding	Description
3	Hand-held high-resolution cameras and supporting analytical instruments will be valuable for sample selection during EVAs.
4	Contamination control is vitally important.
5	We recommend the collection of at least 1000 g of material from two sites that sample the apparent diversity of the body.
6	We recommend the collection of at least one 5-cm diameter core sample of regolith from each of the two sites.
7	Preservation of volatiles is desirable, particularly if the sampled asteroid is of type C, P, or D.

Science Requirements

- Conversations with JSC scientists yielded five major sample types.
 - *Float:* Rocks that are loosely adhered to the surface
 - *Regolith:* A collection of unconsolidated rock fragments loosely adhered to the surface
 - Surface: The very top layer of dust on the surface
 - Chip: Pieces of a parent body forcibly removed
 - Core: Cylindrical section of the parent body

Integrated Geology Sampling System

- NASA
- After testing individual sampling methods an *integrated* sampling kit was created focusing on <u>sample containment</u> and <u>cross-contamination protocol</u>.
- Sample Briefcase
 - The Sample Briefcase is the carrying case in which the end effectors are housed prior to and after use.
 - Serves as a method to transport end effectors to and from worksites and provides final containment once a sample is collected.
 - Volume is allocated for soft sample bags to collect contingency samples and/or targets of opportunity once all end effectors have been used.
- Drivers
 - Manual Driver is used to obtain loosely adhered samples that can be liberated using hand strength alone.
 - Powered Driver is used when an increased force is needed to remove samples from the surface.

End Effectors

- Various End Effector were designed to facilitate the retrieval of all sample types of interest.
 - Float/Regolith: Dual purpose clamshell end effect including a window and integrated color/scale bar.
 - Surface: Stamp version using aluminum foam to capture particulate and a simple hinged containment lid.
 - Chip: Utilizes an embedded chisel that extends when in use and a sliding containment door.
 - Core: A lo-fi version of a core collection system.

Field Testing

Forward Work

- Continue participating in Integrated Testing
- Continue building partnerships with the science community and understanding how exploration science affects EVA Tool design.
- Maintain and grow partnerships with Industry and Academia.
- Develop prototype and eventually Flight hardware for Exploration class missions