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UNSUPERVISED FRAMEWORK TO
MONITOR LAKE DYNAMICS

CROSS-REFERENCE OF RELATED
APPLICATION

The present application is based on and claims the benefit
of U.S. provisional patent application Ser. No. 61/972,794,
filed Mar. 31, 2014, the content of which is hereby incor-
porated by reference in its entirety.

This invention was made with government support under
IIS-1029711 awarded by the National Science Foundation
(NSF), and NNX12AP37G awarded by the National Aero-
nautics and Space Administration (NASA). The government
has certain rights in the invention.

BACKGROUND

Approximately two-thirds of the Earth's surface is cov-
ered by water in the form of streams, rivers, lakes, wetlands
and oceans. Surface water is not only critical to the ecosys-
tems as a key component of the global hydrologic cycle but
also is extensively used in daily life (e.g., electricity gen-
eration, drinking water, agriculture, transportation, and
industrial purposes).

Traditional monitoring/event reporting systems for sur-
face water primarily rely on human observations or in situ
sensors. Due to the massive area that water covers, a
comprehensive effort that maps changes in global surface
water is lacking. This limits our understanding of the hydro-
logic cycle, hinders water resource management and also
compounds risks. For example, unusually heavy rains for
four consecutive days as well as melting snow rapidly
increased the water levels of lakes and rivers in the Hima-
layas region of the Indian state of Uttarakhand during June
2013, leading to floods and landslides. Due to the lack of an
effective monitoring system of the surface water in this area,
no early warning was provided. This unexpected disaster
eventually resulted in huge loss of life and property.

SUMMARY

A method of reducing processing time when assigning
geographic areas to land cover labels using satellite sensor
values includes a processor receiving a feature value for
each pixel in a time series of frames of satellite sensor
values, each frame containing multiple pixels and each
frame covering a same geographic location. For each sub-
area of the geographic location, the sub-area is assigned to
one of at least three land cover labels. The processor
determines a fraction function for a first sub-area assigned to
a first land cover label. The sub-areas that were assigned to
the first land cover label are reassigned to one of the second
land cover label and the third land cover label based on the
fraction functions of the sub-areas.

In a further embodiment, a system for more efficiently
categorizing pixels in images of a surface is provided. The
system includes a memory containing features for each pixel
in the images, such that for each sub-area of a geographic
location captured by the images there is a time series of
features. A processor performing steps that include deter-
mining a distribution for the time series of features for each
sub-area, forming a graph linking neighboring sub-areas and
for each pair of linked sub-areas, breaking the link between
the two sub-areas based on differences in the distributions
for the time series of features for the two sub areas. The
processor also categorizes sub-areas with fewer than a

2
threshold number of links to other sub-areas as a transition
category and categorizes sub-areas with at least the thresh-
old number of links as one of at least two other categories.
In a further embodiment, a method for improving iden-

5 tification of land cover from satellite sensor values is pro-
vided where a processor performs steps that include receiv-
ing satellite sensor values for a collection of sub-areas and
forming a graph linking neighboring sub-areas in the col-
lection of sub-areas. For each pair of linked sub-areas, the

10 link between the two sub-areas is broken based on differ-
ences between the satellite sensor values of the two sub
areas. Sub-areas with fewer than a threshold number of links
to other sub-areas are categorized as having a transition land

15 cover while sub-areas with at least the threshold number of
links are categorized as having one of at least two other land
covers.

BRIEF DESCRIPTION OF DRAWINGS

20
FIG. lA provides a graph of feature values for a pure

water sub-area over a period of time.
FIG. 1B provides a graph of feature values for a pure land

sub-area over a period of time.
25 FIG. 2 provides distributions of feature values for water

and land sub-areas.
FIG. 3 provides a flow diagram for labelling satellite

sensor data.
FIG. 4 provides a system diagram of a system for label-

30 ling satellite sensor data.
FIG. 5 provides graphs showing the formation of clusters

using linked graphs.
FIG. 6 provides graphs showing rules for breaking links

in a linked graph.
35 FIG. 7 provides graphs of misclassified sub-area counts

for a collection of locations using a baseline method and a
method of embodiments described herein.
FIG. 8 shows input data and output labelling for a

particular area on two different dates.
40 FIG. 9 provides a block diagram of a computing system

that can be used to implement the various embodiments.

DETAILED DESCRIPTION

45 Embodiments below provide a methodology for dynami-
cally mapping large freshwater bodies (>4 km2 in surface
extent), henceforth called lakes, using remote sensing data
as input.
Mapping and monitoring water resources accurately at a

50 global scale using overhead image data is a challenging task.
1) In image data, pixels containing the shoreline are

usually a mixture of water and other surface classes (such as
vegetation or soil). These other classes may themselves
undergo changes, which may or may not be connected to

55 changes in water extent. For example, it is common for
vegetation to be present at shorelines; the vegetation can
undergo seasonal change independent of water extent, or it
may become inundated by increasing water extent, and
distinguishing between the two is important. Small islands

6o also pose a challenge, since they may disappear entirely. The
issue of mixed pixels is particularly consequential for mod-
erate to coarse-resolution satellite instruments, though it
remains an issue even for high-resolution sensors.
2) Unlike vegetation, where phenological cycles are fairly

65 regular and pronounced (especially in the boreal regions),
hydrologic cycles are often irregular and do not follow a
regular annual cycle. This poses a challenge when estimat-
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ing long-term variability, and makes the distinction between
seasonal change and trend change less evident.
3) Not all bands in the multi-spectral image data set are

useful for discriminating water from other classes, and noise
and outliers exacerbate this issue. Thus, there is a need for
some type of feature selection from the multi-spectral opti-
cal remote sensing data, including non-linear combinations
on the input bands. As the number of features increases,
analysis becomes unsuitable for a human expert and it
becomes necessary to utilize supervised classification
approaches which can discover optimal class-separating
boundaries utilizing the full feature space.
4) There is considerable data heterogeneity on the global

scale. Depending on the satellite-sun angle (relative to the
water surface), depth, biological activity, turbidity, surface
wind and other conditions, similar patches of water can
appear to be very different in the remote sensing data; i.e.,
water surface observations are multi-modal in spectral
space. This can be a considerable challenge for classifica-
tion-based methods since these approaches require training
data. Obtaining training data requires substantial manual
effort and is often expensive. Furthermore, certain land
cover types (e.g. basaltic lava fields) and clouds are similar
to some water modes in the spectral space, making the
heterogeneity issue more challenging.
5) The lack of representative training data with global

coverage also poses a challenge for performance evaluation.
In particular, labelled reference data is essential to quanti-
tatively assess and compare the performance of algorithms.

In the various embodiments a novel unsupervised tech-
nique for monitoring the surface area of lakes is provided
that overcomes many of the challenges discussed above. The
various embodiments use a combination of independent
validation data and physics-guided labelling to quantita-
tively evaluate performance.
Problem Setting
The various embodiments use several problem settings in

the order of increasing complexity (i.e., fewer assumptions
are made). Even though the discussion below only focuses
on a univariate scenario, the problem settings are easy to
extend to multivariate analysis as well.

Simply put, if a class label (i.e., water or land) can be
provided for any pixel at any time, the various embodiments
are able to generate a dynamic map that shows the evolution
of water extent. Therefore, the general problem is to monitor
the evolution of membership for a dataset that contains both
spatial and temporal autocorrelations. In detail, the follow-
ing is one problem solved in some embodiments.

Overall Problem Setting.
Given a univariate spatial temporal dataset D, where D(i,

t) is the observation of its ith location at time step t, predict
its class label matrix C such that C(i, t) (the element in the
it'' row and th column of C) is the class label for the ith
location at time step t.

For the sake of simplicity, for any matrix A we use A(i, :)
as its ith row, which indicates the corresponding time series
at location i. Similarly, we use A(:, t) as its t h column, which
indicates observations of all the pixels at time t.

To monitor the dynamics of lake extent, a variable is
needed that can distinguish water pixels and land pixels.
Without loss of generality, it is assumed that the expected
values of land signals are lower than the expected values of
water signals at a given region and a given time (If the real
variable has higher values for land pixels, we can multiply
all the data by —1.). This provides a first overall assumption.

Roughly speaking, locations on the earth are covered
either by water or land. Due to limited spatial resolution of

4
remote sensing sensors (e.g., each pixel in our dataset
records signals representing more than 15 acres of area),
often times a pixel records a signal which is a mixture of the
two. Most existing monitoring algorithms do not consider

5 the existence of such mixed pixels and hence cannot provide
an accurate classification result. Below, a linear mixing
model is used to model mixed pixels.

Definition (Linear Mixing).
Each pixel is a linear mixture of two basis signals w and

10 1 representing water and land respectively. Given its fraction
number f (i.e., its percentage area covered by water), the
expected observation of the give pixel x can be obtained as
below.

15 x=fxw+(1- )xl

Although mixed pixels are considered in various embodi-
ments and the fractions are calculated, the embodiments
provide a class label to each pixel at any time. To do so,

20 mixed pixels whose fraction number is larger than 0.5 are
considered water pixels and the mixed pixels whose fraction
number is smaller than 0.5 are considered land pixels.
Overall Assumptions.
In some embodiments, two assumptions are used. They

25 are:
1. Water pixels have higher expected values than land pixels.
2. Pixels in the dataset follow a linear mixing model.
Potential Assumptions

Four assumptions are made sequentially by relaxing con-

30 ditions, i.e., most strict but unrealistic assumption will be
provided first and the loosest but closest to reality assump-
tion will be given at the end.
As the most simple but unrealistic assumption, we assume

that all pure water pixels (i.e., pixels that covered by water
totally) have exactly the same value at all time steps.

35 Similarly, pure land pixels (pixels that contain no water)
have exactly the same values over time as well.

Assumption 1.
Let w be the value for pure water pixels and 1 be the value

for pure land pixels. Then, we assume that
40

w if D(i, t) is a pure water

D(i, t) = l if D(i, t) is a pure land

f xw+(1— f)xl otherwise
45

where f is the fraction number for D(i, t).
Many time series datasets (including the one used in

monitoring water surface extent) are non-stationary. Hence,
50 assuming that water pixels (or land pixels) have the same

observation over time is unrealistic. For example, FIG. lA
shows a time series of pixel values of a location that is
verified as pure water and FIG. 1B shows a time series of
pixel values for a location that is verified as pure water by

55 
experts, respectively. Both of them show a clear pattern,
which verifies that we should not assume values for pure
water and pure land pixels are constants over time. By
relaxing such constant constraint, we get a second assump-
tion.

Assumption 2.
60 Let w(t) be the value for pure water pixels and 1(t) be the

value for pure land pixels at time t. Then, we assume that

w (t) if D(i, t) is a pure water

D(i, t) = l (t) if D(i, t) is a pure land

65 f x w (t) + (1 — f) x l (t) otherwise

where f is the fraction number for D(i, t).
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In Assumption 1 and Assumption 2, we assume that
values of pure water pixels and pure land pixels are constant
variables. However, due to pollutions from noise (which is
unavoidable during data collection), they are random vari-
ables. Hence, a natural relaxation of Assumption 2 is to
consider each observation as a random variable. Besides, our
exploration on the dataset shows that pure land pixels and
pure water pixels have different variances. FIG. 2 shows a
distribution 204 of water pixels and a distribution 206 of
land pixels in the area near Coari (Amazon in Brazil) at May
9, 2002, with pixel values shown on horizontal axis 200 and
the number of pixels shown on vertical axis 202. We observe
that there is a significant difference in the variance of water
pixels and land pixels. Hence, we consider that noise in
water pixels and land pixels do not share a same variance.

Assumption 3.
Let w(t) be the value for pure water pixels and 1(t) be the

value for pure land pixels at time t. Then, we assume that any
data D(i, t) is the linear combination of its expected value
and a white noise. That is,

w (t) + n if D(i, t) is a pure water

D(i, t) = l (t) + na if D(i, t) is a pure land

fxw(t)+(1—f)xl(t)+nm otherwise

where nw, ni and nm are white noise with different variances.
All the previous assumptions state that pure water pixels

and pure land pixels form homogeneous sets. In other words,
all pure water pixels at the same time step share the same
expected value and all pure land pixels at the same time step
also share the same expected value. However, within each
category (water or land), different locations may have dif-
ferent expected values due to differences in each location's
geographical characteristics (e.g., water depth) and setting in
a coastal area. This phenomenon is called spatial heteroge-
neity which is believed to be closest to the reality, relaxes the
homogeneity assumption used before and considers the
heterogeneity in the dataset.

Assumption 4.
Assume that there are 7 types of water pixels, which the

expected values at time t are wtr), wt2~, .. wt . Similarly,
there are K types of land pixels whose expected values are
It% 1t2), .. , lt«. The dataset contains non-trivial number
of pure pixels under each type. Then, if D(i, t) is a pure type
j water pixel,

D(i,t)=wrU+nw

Similarly, if it is a pure type k land pixels, then

D(,t)-1,(k)
+n,

If D(i, t) is a mixed pixel that is a mixture of type j water and
type k land, then

D(i,t) fw,1')+(1 f)lt(t)+nm

where nw, ni and nm are white noise with different variance.
Problem Formulation

Under different assumptions, the target problem is for-
mulated in different ways. All the problem formulations
introduced below aim to calculate a fraction matrix F for the
dataset, which the element F(i, t) is the percentage area
covered by water in location i at time t. The class label
matrix C can be obtained by binarizing the fraction matrix.
We use a threshold of 0.5 for binarization.

According to Assumption 1, all pure water pixels in the
dataset have value w and all pure land pixels in the dataset

6
have value 1. Based on the two overall assumptions, w<—D(i,
t):51. Hence, the problem formulated based on Assumption
1 is as below.
Problem Setting 1.

5 Given dataset D, estimate w, 1 and a fraction matrix F
under the following constraints:
3. 1=min(D)
4. w=max(D)
5. D=wF+1(1—F)

10 
where, min(D) and max(D) are the minimum and maximum
value in D. 1 is a nxm matrix of which all elements are 1.

Similarly, the problem setting based on Assumption 2 is
as below.

15 Problem Setting 2.
Given dataset D, estimate wt, It for each tE{1, 2, ... , m}

and a fraction matrix F under the following constraints:
6. lt=nin(D(:, t)) for VtE{1, 2, ... , m}
7. wt=nax(D(:, t)) for VtE{1, 2, ... , m}

20 8. D=Fdiag(wr, w21 .... wm)+(1—F)diag(Ir, 12, ...
where, min(D(:, t)) and max(D(:, t)) are the minimum and
maximum value in D(:, t). 1 is a nxm matrix of which all
elements are 1. And, diag(ar, a2, .... am) is a mxm diagonal
matrix of which the it'' diagonal element is a,.

25 Assumption 3, unlike the first two assumptions, takes
noise into consideration. When data from water pixels and
land pixels are random variables, the water basis and land
basis cannot be determined as a simple constraint as in
Problem Setting 1 and Problem Setting 2. In detail, the

30 problem formulation under Assumption 3 is
Problem Setting 3.

Given dataset D, estimate wt, It for each tE{1, 2, ... , m}
and fraction matrix F under the following constraints:
9. There are a non-trivial number of pure water and pure land

35 pixels at any timestep.
10. D(i, t)wtF(i, t)+lt(1—F(i, t))+n
where n is a random noise such that

40 1 N(0, o-ry,) if D(i, t) is a pure water pixel

n— N(0, o-a) if D(i, t) is a pure land pixel

Unknown otherwise

45 In the various embodiments of the invention, the lake
extent monitoring problem is solved under the most realistic
assumption (i.e., Assumption 4). The major difference in the
problem that is solved by the various embodiments of the
invention is that the dataset is considered to be a heteroge-

50 neous dataset. In detail, the problem is as below.
Problem Setting 4.

Given dataset D, estimate fraction matrix F under the
following constraints:
11. Pure water pixels form finite clusters and pure land

55 pixels form finite clusters as well. Pixels within each cluster
share the same expected value.
12. There are a non-trivial number of pixels in each cluster
(both water clusters and land clusters).
13. D(i, t)wtF(i, t)+lt(1—F(i, t))+n

60 where n is as same as the one used in Problem setting 3.

Example Embodiments

FIG. 3 provides a method and FIG. 4 provides a system
65 diagram of a system used to improve the efficiency and

accuracy of labeling satellite sensor data. In FIG. 4, a
satellite 400, positioned in orbit above the earth and having
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one or more sensors, senses values for a geographic location
402 that is comprised of a plurality of sub-areas such as
sub-areas 404, 406 and 408. Multiple sensors may be present
in satellite 400 such that multiple sensor values are gener-
ated for each sub-area of geographic location 402. In addi-
tion, satellite 400 collects frames of sensor values for
geographic location 402 with each frame being associated
with a different point in time. Thus, at each point in time, one
or more sensor values are determined for each sub-area in
geographic location 402 creating a time series of sensor
values for each sub-area. Satellite 400 transmits the sensor
values to a receiving dish 410 which provides the sensor
values to a communication server 412. Communication
server 412 stores the sensor values as frames of sensor
values 414 in a memory in communication server 412. A
labeling server 416 receives frames of sensor values 414 and
provides the received frames of sensor values to a feature
extractor 418. Feature extractor 418 extracts one or more
features for each sub-area based on the sensor values for that
sub-area for a single frame. As a result, feature extractor 418
produces frames of features 420 with each frame corre-
sponding to a point in time and each frame containing one
or more feature values for each sub-area. The sensor values
and feature values for a sub-area in a single frame are
referred to as the values of a pixel for the frame. Thus,
feature extractor 418 converts a pixel's sensor values into a
pixel's feature values. Each pixel is associated with a
particular sub-area at a particular time.
The frames of features 420 are provided to a categorizer

422 which forms labeled sub-areas 424 as described further
below. As part of forming the labeled sub-areas, categorizer
432 generates a linked graph of sub-areas 426 as described
further below. In addition, categorizer 432 forms fraction
functions 428 for some of the sub-areas as described further
below.

Under some embodiments, a four-step unsupervised
framework (as shown in FIG. 3) is provided that generates
labeled sub-areas 424 and fraction functions 428 from
frames of features 420. The framework method includes: (i)
sub-area categorization 302 (ii) fraction matrix generation
304 (iii) confidence calculation 306 and (iv) fraction map
refinement 308. Sub-area categorization 302 partitions all
sub-areas into three categories, static water ((W) ), static
land ((L) ) and others (x, which includes dynamic sub-areas
that transition between land and water, and static sub-areas
that are mixed). The fraction matrix, which represents the
percentage area of water for each pixel at any time, is
generated in step 304 using sub-area categories obtained
from step 302. Elements in the initial fraction matrix are
often contaminated by noise and outliers. Hence, in step 306,
a confidence score is assigned for each fraction. Utilizing the
confidence matrix and temporal correlation in the fraction
scores of each location, the fraction matrix is refined and the
final fraction functions 428 is output in step 308. In the rest
of this section, we will discuss each step in detail.
Sub-Area Categorization
Sub-areas can be labelled as static sub-areas (locations

that do not change their categories over time) and dynamic
sub-areas (locations that do change their categories over
time). In categorization step 302, according to some embodi-
ments, a graph-based method is used to cluster sub-areas
into multiple groups such that sub-areas within the same
cluster belong to the same category. Note that the sub-areas
under the same category are allowed to be partitioned into
different clusters (i.e. sub-areas within one category can be
heterogeneous).

8
Categorization helps the algorithm in two aspects. First,

after categorization, stable water sub-areas and stable land
sub-areas will be given a (W) or (L) label directly. Since
the graph-based clustering method utilizes spatial and tem-

5 poral information together in a natural way, its performance
is robust to noise and outliers, even when a given time step
is highly contaminated by noise and outliers. Second, the
(W) and (L) sub-areas can be used as basis signals which
will be used later to assign a fraction for the x sub-areas.

10 The key steps in categorization are shown in FIG. 5. First,
a spatial graph 426 (FIG. 4) is created of all the sub-areas,
in which every node, such as node 500, represents a sub-area
and is connected with its 8 adjacent neighbors by a respec-
tive edge, such as edge 502, as shown in FIG. 5(a). Then,

15 each edge in the graph is checked. If the data shows that the
two nodes linked by an edge do not belong to the same
category, the edge is deleted. Otherwise, the edge is pre-
served. Transition (x) sub-areas are then detected from the
remaining graph. In FIG. 5(b), remaining edges are shown

20 as black lines and x sub-areas are shown in shaded area 504.
Next, each non-x pixel is clustered with its 4-neighbors as
long as its 4-neighbor is not a x sub-area. In this context, a
4-neighbor is a sub-area located on one of the four sides of
the sub-area and excludes neighbors located at the corners of

25 the sub-area. The clustered result of the example is shown in
FIG. 5(c), showing three clusters 506, 508 and 510 and x
sub-areas 504. Finally, a label is assigned to each cluster
based on a heuristic derived from domain knowledge. The
final output of the categorization step is shown in FIG. 5(d).

30 Below, the criterion for deleting an edge, the method of
determining x sub-areas, and the labelling of each cluster are
discussed.
Criterion for Deleting an Edge
Any edge in the graph is connected to two nodes that

35 represent two sub-areas. Since nodes that are linked together
will be grouped into one cluster, an edge needs to be deleted
if it connects two nodes that do not belong to the same
category. In order to account for the heterogeneity within
each category (see the problem formulation in Section 2),

40 edges that link two nodes from different types of a category
are also deleted. By assuming that nodes from the same
cluster in the same category have similar values and a
similar level of noise contamination, links are preserved by
comparing the distribution of the two nodes' temporal

45 observations. An edge is deleted if the two distribution are
significantly different. The following hypothesis test is used
to judge whether or not the two distribution are different:

H,.F(D(i,:))=F'(D(j,:))

50
Ha:F(D(i,:)oF'(H(j,:)

where F (D(k, :)) is the distribution of the k h object in
dataset D created using all its temporal observations. By
using this criterion, the temporal observations of any sub-

55 area are assumed to be i.i.d. Although this assumption does
not entirely hold in reality because of the temporal correla-
tion that exists in the dataset, it is a reasonable approxima-
tion because the temporal correlation of water sub-areas is
not high in most cases. The two-sample Kolmogorov-

60 Smirnov test (KS test) is used for this hypothesis test. The
KS test is nonparametric and hence is suitable for the
analysis.
Heuristics to Determine x Pixels
Any node that is connected to fewer than k other nodes is

65 labeled as Z. In the various embodiments, k=6 is used to
avoid having any 4-neighbor of a stable water sub-area (
(W) ) be a stable land sub-area ((L) ). When k<6, the above
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condition cannot be achieved, as is shown in the following
examples. FIG. 6(a) shows a scenario where the circled
water sub-area has five water neighbors and the circled land
sub-area has five land neighbors. In this scenario, when k=5,
both the circled water sub-area and the circled land sub-area
will not be labeled as Z. Hence, the condition is not met.
When k=6, a sub-area is not considered to be x if at most two
of its neighbors is not connected with it (i.e., two of the
8-neighbors belong to the other category). Let us assume
that the target sub-area is a land sub-area and it has two
water neighbors. If the two water neighbors are not adjacent
to each other, as shown in FIG. 6(b), both of the two water
sub-areas will be labeled as Z. Hence, the target sub-area
will not have (111) in its 4-neighbors. If the two water
sub-areas are adjacent to each other as shown in FIG. 6(c)
and FIG. 6(d), the one which is on top of it will be labeled
as Z. When the right neighbor of the circled land sub-area is
another land sub-area (as shown in FIG. 6(c)), the circled
water sub-area will have at least three land neighbors and
hence it is a x sub-area. In the other situation, if the right
neighbor of the circled land sub-area is a water sub-area, the
land sub-area itself will be labelled as a x since it has more
than three water neighbors. In both scenarios, a land sub-
area cannot have a water sub-area as one of its 4-neighbors.
Heuristics to Label a Cluster
From domain knowledge, it is known that variables used

in the various embodiments (TCWETNESS) usually have
values larger than -1000 for water. On the other hand, land
pixels usually have values smaller than -1000. Hence, a
cluster is labeled as land if the median of all observations in
a cluster is smaller than -1000. Similarly, a cluster is
labelled as water if the median of all observations is larger
than -1000.
Fraction Generation

In this step, a fraction for each pixel is computed at any
time. In the previous step, the dataset was partitioned into
three disjoint categories: static water sub-areas ((W) ),
static land sub-areas ((L) ) and x sub-areas. For each
(W) sub-area, we directly assign a fraction of I for all time
steps. Similarly, we assign a fraction of 0 for all time steps
to each (G) sub-area. The major task in the fraction gen-
eration step is to compute fraction values for x pixels.

Let (W) 1, (W) 2 ... (1111) k be k water clusters formed
from the categorization step. Similarly, let (L) 1, (L) 2 .. .
(G) g be g land clusters. We denote w(t) and 1,.(t) as the
representation of cluster (111) . and cluster (,C) j at time t,
respectively. By assuming that observations in each cluster
have the same expected value at any time, w,(t) and i,.(t) can
be estimated as a trimmed mean of observations in (111) i
and (G) 

-, 
at time t. In one embodiment, a 10% trimmed mean

is used.
When calculating the fraction value for any x pixel, the

water and land basis are first decided. From domain knowl-
edge it is known that there is strong spatial correlation within
the data. Hence, basis which are learned from clusters which
are spatially close to the given pixel's sub-area are preferred.

Therefore, we search for one water cluster ((W) ~) and
one land cluster (L) j that are spatially closest to the given
Z sub-area. Then, the fraction function 428 of any x pixel x
at time t can be calculated as:

1 if x(t) >— w; (t)

X(0 — l~ (t)
f (x, t) = if r;); (t) > x(t) > 2i (t)

e~); (t) — 2; (t)

0 if x(t) <-1p)

10
However, this score tends to provide a lower water

fraction to x pixels. The main reason is that the variance of
land clusters tends to be much larger than the variance of
water clusters. To overcome this problem, the fraction

5 function 428 is modified by taking the variance of each
distribution into consideration. Thus, we modify the fraction
function 428 as:

10 1 if x(t) >— w; (t)

X(t) — 1p)
~L . (r)

f (x, t) = if w; (t) > x(t) > 2j (t)
r"); (t) — x(t) x(t) — lj (t)

15 ; (t) -LJ (t)

0 if x(t) <— 2j(t)

where a(L) (t) and x(111) (t) are the standard deviation of
20 observations in cluster (G) j and (W) j respectively.

Confidence Calculation
In the fraction generation step, the fraction function 428

computed for each x pixel is determined by a water basis
w(t) and a land basis 1,.(t). When the distribution of the water

25 cluster (1N) , and land cluster (L) 
_' 
are too similar to each

other, the fraction calculated based on them is not trustwor-
thy. Hence, we developed a confidence score for each x
pixel, which is calculated as the probability that any basis is
not observed in the other distribution. Specifically, the

30 confidence score for the pixel at time t is measured as:

min(P(w)iw) t(L)i(t))P(2iwt t (IV) s(t)))

where p(aOZ) is the probability of a does not belong to x
and

35
p(a~ty,)-p(Ix-E(x)I<alxEy,)

Fraction Refinement
The confidence score and temporal correlation in the

fraction score of each sub-area are used for refining the
40 fraction matrix. In detail, when one of the following two

scenarios occurs, we consider the fraction value to be
invalid:
14. When the information is not enough (i.e., its confidence
score <Sd), we consider the fraction value as invalid.

45 15. When a spike happens in the score, the fraction value is
considered to be invalid.

After applying the above rules to the fraction matrix, we
label each fraction f as either valid or invalid. For each
invalid fraction, we search its temporal neighborhood and

50 find the most recent historical valid fraction (f,,) and the
subsequent further valid fraction number (ff). The invalid
fraction is then replaced with:

f,-0.5  (6+A)

55 Experimental Results
The embodiments were compared against baseline

method of the prior art on three lakes that show high
seasonal variation in their area extent since the year 2002.
Specifically, two regions in the Amazon in Brazil: Coari

60 (Lago de Coari) and Tacivala (Lago Grande) and one region
in Mali in Africa (Lac de Selingue). Each region includes
both water pixels and land pixels.
Data
The surface water area is monitored based on a "wetness

65 index" obtained from the tasseled cap transformation. The
tasseled cap transformation creates three orthogonal features
that represents different physical parameters of the land



US 9,430,839 B2
11

surface. The feature that represent "wetness" is used in the
various embodiments and is referred as TCWETNESS.
The TCWETNESS can be obtained using multispectral

data products from MODIS, which is available for public
download. In some embodiments, TCWETNESS is obtained
from frames of sensor values 414 consisting of Bands 1 and
2 from the MODIS spectral reflectance data product
(MYD09Q1) which has 250 m spatial resolution, and Bands
3 through 7 from (MCD43A4) which has 500 m spatial
resolution; all bands have a temporal frequency of 8 days.
Resampling Bands 3 through 7 to 250 spatial resolution, the
TCWETNESS dataset is an 8-day 250 m spatial-temporal
dataset, which is available from July 2002 till present.
Evaluation Setup
Due to the considerable expense involved, gold standard

validation sets for surface water changes over time are not
available. In the various embodiments, two types of data are
used to assess the performance of any surface water moni-
toring algorithm: (i) fraction maps manually extracted from
high-resolution Land-sat images (ii) height of the water
surface obtained from satellite radar altimetry.

Landsat-5 is one of the satellites in a series of 8 Land-sat
satellites which have maintained a continuous record of the
Earth's surface since 1972. Thematic Mapper (TM) sensor
onboard Landsat 5 is a multi-spectral radiometric sensor that
records seven spectral bands with varying spatial resolu-
tions. Bands 1 through 5 and Band 7 are available at 30 m
resolution and Band 6 (the thermal band) is available at 120
m spatial resolution. Due to relatively high spatial resolu-
tion, it can be used to manually delineate a lake boundary
with high accuracy. A validation fraction maps (LSFRAC-
TION) is obtained by resampling this layer to 250 m
resolution, which matches the resolution of TCWETNESS.
The number of available LSFRACTION is limited due to

the extensive human effort required for LSFRACTION
generation. Therefore, instead of evaluating algorithms
using LSFRACTION exhaustively, we verify their correct-
ness based on two intelligently selected dates for each area.
Specifically, human experts create one LSFRACTION on
the date when the lake is at its peak height and another
LSFRACTION on the date when lake height is at its
minimum. After binarizing the scores and fractions provided
by the algorithms and LSFRACTION, embodiments are
evaluated on the two dates when LSFRACTION is avail-
able. In particular, different methods are compared using
both F,-measure and accuracy. Note that since surface height
and water extent are positively correlated for any lake, the
two LSFRACTION also correspond to the maximum and
minimum lake extent. Therefore, pixels that are marked as
pure land (the water fraction is 0) in both LSFRACTION are
considered as true static land (T,). Similarly, pixels that are
marked as pure water (the water fraction is 1) in both
LSFRACTION are considered as true static water (Tj
Following this logic, we obtain labels of these pixels at any
time step.

Height information for some lakes in the world is avail-
able from the Laboratoire d'Etudes en G6ophysique et
Oceanographie Spatiales (part of the French Space Agency)
and the U.S. Department of Agriculture. The height value in
the dataset is measured based on the return signal of a radar
pulse, which is robust to cloud cover and is able to take
night-time measurements. A recent inter-comparison and
validation study found these datasets to be accurate within
centimeters and hence is sufficient to be used in an evalu-
ation. When the height of the lake surface increases, the
surface water extent of the lake cannot decrease, which
implies that the water fraction of any pixel in the lake cannot

12
decrease. Hence, the fraction of any pixel in the lake is a
monotonic function with respect to the height of the given
lake. Utilizing this physical constraint, the correctness of the
fraction result can be verified by examining if the monotonic

5 relationship has been broken. Specifically, the Kendall Tau
correlation is used in the evaluation. Before introducing
Kendall Tau (KT), we first define concordant pairs and
discordant pairs. Assume that fraction calculated for time to
and tb is a and b. Their corresponding height information is

to ha and hb. a and b is a concordant pair iff

15

(a-b)(ha hb)a0

Any pair which is not concordant is a discordant pair.
Kendall Tau (KT) is then defined as

N, - Nd
KT = N + Nd

20 where N, is the number of concordant pairs and Nd is the
number of discordant pairs. Ideally, KT should equal 1 if all
the scores are correct.
Results

Binarizing the fractions calculated from any algorithm
25 and the fractions given in LSFRACTION, we can compare

the performance of the various embodiments and a baseline
method at the dates when LSFRACTION is available. Table
1 and Table 2 show their performance on the three lakes

30 
under the study.

TABLE 1

F measure and Accuracv for all locations.

35 F measure Accuracy

Baseline Embodiment Baseline Embodiment

Coari day 1 0.4241 0.9268 0.4403 0.9573
day 2 0.9410 0.9453 0.9613 0.9649

Tacivala day 1 0.7729 0.7248 0.9757 0.9792
40 day 2 0.3972 0.7632 0.9203 0.9846

Selingue dayl 0.5890 0.7525 0.9249 0.9663
day 2 0.8721 0.8247 0.9619 0.9578

45 TABLE 2

Mean KT value for all locations.

Baseline Embodiments

50 Coari 0.81 0.97
Tacivala 0.41 0.97
Selingue 0.90 0.96

From two LSFRACTION data per lake, we know that Tw
55 pixels should be labelled as water and T, pixels should be

labelled as land for all time steps. Hence, we can evaluate
the performance of the proposed method and the baseline
method for each time step using Tw and T, pixels. FIG. 7
shows the count of misclassified pixels at each time step for

60 the baseline method (top lines) and the proposed method
(bottom lines). We use log scale to the count number to show
results from both methods clearly. From the figure, we can
observe that the proposed method in general has less mis-
classification error than the baseline method.

65 A better algorithm will provide a higher F-measure,
higher accuracy, larger mean KT value and less misclassi-
fication error. Table 1, Table 2 and FIG. 7 show that the
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performance of the various embodiments is consistently
better than the baseline method. By comparing the perfor-
mance of the two algorithms on different dates, we notice
that the proposed method is more consistent than the base-
line method. 5

Date Specific Performance of Baseline Approach

The baseline method classifies water and land pixels for
each time step independently. Hence, when the quality of an
image is good, it performs well. However, when the quality
of the image is bad, its performance deteriorates. On the
contrary, the various embodiments use temporal information
and hence are robust to noise even when the image is largely
contaminated by noise and outliers. FIG. 8 shows data from
Coari region for two different dates. The first row shows the
landsat image, the MODIS image and results from both the
baseline method and the proposed method on day I when the
MODIS image does not have good quality. From both FIG.
8 and Table 1, it is observed that the various embodiments
still work reasonable but the baseline method does not
perform well. In the second row, corresponding images on
day 2 when the MODIS image quality is good are provided.
Here, both methods show good performance when com-
pared to corresponding LSFRACTION.

Evaluation of (W) and (L)

As shown in FIG. 3, the first step of the proposed method
is to partition the dataset into two sets (i) S sub-areas (static
sub-areas that includes (W) , i.e., static water sub-areas, and
(L) , i.e., static land sub-areas) and (ii) x sub-areas (all the
sub-areas that are not static). Fractions of S sub-areas are
given directly after the first step. Their information is used
in the remaining steps as well. Hence, the performance of
categorization is critical for the proposed method.

Table 3 shows the confusion matrix of (W) , (L) and x
compared with Tw, Ti and true dynamic sub-areas Dx (i.e.,
sub-areas that are not Ti and not Tj From table 3 it can be
seen that the categorization under the various embodiments
is good since there is no Ti sub-areas labelled as (W) and
no Tw sub-areas labelled as (L) .

TABLE 3

The confusion matrix of categorization results. 45

Tw Dx T,

Coari w 5011 8 0
X 1853 1654 1804
L 0 4 14804

Tacivala w 256 81 0
X 483 1190 1903
L 0 4 10545

Selingue w 453 183 0
X 1245 2875 15016
L 0 17 15308

Table 4 provides the F-measure and accuracy of classifi-
cation results from the various embodiments and the base-
line method for S pixels. Two observations can be made
from the table. First, the various embodiments for catego-
rization are reliable even when the data quality is not good
(e.g., the day I in Coari region as shown in FIG. 8). Second,
without using temporal information properly, baseline
method performs badly. As a conclusion, (W) , and
(L) pixels detected from the various embodiments are
robust to noise and outliers and can be used reliably in the
later steps in the proposed method.

50

14
TABLE 4

F measure and Accuracy for S pixels

F measure

Base- Accuracy

line Embodiments Baseline Embodiments

10 
Coari day 1 0.3877 1.0000 0.3882 1.0000

day 2 0.9991 1.0000 0.9995 1.0000

Selingue day 1 0.9339 0.9985 0.9984 1.0000

day 2 0.2161 0.9629 0.9270 0.9992

Tacivala day 1 0.5175 0.8822 0.9427 0.9918

day 2 0.9910 0.9992 0.9992 0.9999

15

4.3.3 Evaluation of x Pixels

Fraction values of x pixels rely on the performance of
categorization as well as the proposed scoring mechanism.

20 Through our previous analysis, we have already demon-
strated the accuracy of the categorization step is high.
Hence, by analysing x pixels, we are evaluating the perfor-
mance of the scoring mechanism. Table 5 and Table 6
provide F-measure, accuracy and mean KT values for all x

25 pixels. Notice that the various embodiments are better than
the baseline method in Coari and Tacivala in day 1. Other-
wise, they perform similarly.

To understand the performance on x pixels, we further
30 split x pixels into two sets, Zs (i.e., x pixels that are static

based on LSFRACTION) and Xd (i.e., x pixels that are true
dynamic pixels according to LSFRACTION). Table 7 and
Table 8 show F-measure, accuracy and mean KT values of
Z, pixels. We notice that the various embodiments consis-

35 tently perform better than the baseline method. S pixels
contain similar information with xs pixels because xs are
static land or static water in the reality. Hence, the various
embodiments are able to label Z, correctly by borrowing
information from S pixels.

40
The various embodiments and the baseline method do not

work well in the xa pixels. The F-measure, accuracy and
mean KT value of these pixels are given in Table 9 and Table
10. These pixels are difficult to estimate correctly for many
reasons. Most importantly, (L) and (W) may not contain
enough information to describe these dynamic pixels. When
these locations are covered by water, they are shallow water
pixels. Various studies have claimed that signals from shal-
low water pixels are different from the ones from deep water
region. Besides, when these pixels changes to land, their
wetness may still be higher than real stable land pixels.

TABLE 5

55 F measure and Accuracy for y pixels.

F measure

Base- Accuracy

60 line Embodiments Baseline Embodiments

Coari day 1 0.5739 0.7731 0.6278 0.8039
day 2 0.8520 0.8566 0.8232 0.8380

Selingue day 1 0.7336 0.6287 0.7828 0.8028
day 2 0.6854 0.6833 0.8737 0.8843

Tacivala dayl 0.6173 0.7152 0.9111 0.9467
65 day 2 0.8555 0.7938 0.9327 0.9248
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TABLE 6

Mean KT value for y pixels.

Baseline Embodiments

Coari 0.79 0.86
Tacivala 0.65 0.87
Selingue 0.89 0.93

TABLE 7

F measure and Accuracy for X, pixels.

F measure

Base- Accuracy

line Embodiments Baseline Embodiments

Coari day 1 0.6231 0.8681 0.6166 0.8687
day 2 0.8994 0.9274 0.8890 0.9232

Selingue day 1 0.7319 0.8119 0.8554 0.9308
day 2 0.8065 0.8184 0.9199 0.9304

Tacivala dayl 0.7463 0.8839 0.9496 0.9811
day 2 0.8303 0.9519 0.9687 0.9927

TABLE 8

Mean KT value for X. pixels

Baseline Embodiments

Coari 0.81 0.98
Tacivala 0.40 0.98
Selingue 0.90 0.96

TABLE 9

F measure and Accuracy of y,, pixels.

F measure

Base- Accuracy

line Embodiments Baseline Embodiments

Coari day 1 0.4300 0.4838 0.6261 0.6465
day 2 0.7834 0.7450 0.6927 0.6651

Selingue day 1 0.7558 0.5489 0.6635 0.5875
day 2 0.5636 0.5353 0.7012 0.7059

Tacivala dayl 0.4043 0.4005 0.6569 0.7128
day 2 0.8623 0.6884 0.7893 0.6393

TABLE 10

Mean KT value for X., pixels.

Baseline Embodiments

Coari 0.75 0.81
Tacivala 0.78 0.81
Selingue 0.86 0.86

CONCLUSION

The various embodiments provide an unsupervised
method for monitoring the lake dynamics. In detail, these
embodiments first utilize a graph based clustering method to
partition data into three categories, static water, static land
and others. The fraction matrix, which represents the per-

16
centage area of water for each pixel at any time is then
generated based on the partition results. A confidence value
for each fraction is also provided. Utilizing the confidence
values, we refine the fraction matrix and create the final

5 fractions. We also developed a methodology for quantitative
evaluation of the algorithm performance using a combina-
tion of independent validation data and physics-guided
labelling. From our evaluation, we demonstrate that the
various embodiments are more accurate and robust than the

10 state-of-art method.
By studying the experimental results in detail, it is noticed

that the various embodiments perform well in the static
sub-areas (i.e., the sub-areas that are always covered by
water or by land). The embodiments detect stable water (

15 (W) ) sub-areas and stable land ((L) ) sub-areas with high
accuracy by utilizing both temporal and spatial information.
The static sub-areas within x are also classified with high
accuracy because they share similar information with the
pixels that are in (W) and (L) .

20 The embodiments described above improve the perfor-
mance of computing systems used to label sensor data by
allowing the computing systems to operate more efficiently
and more accurately. In particular, in prior art unsupervised
labeling systems, K-means clustering has been used to

25 cluster sub-areas that surround a known water area. Such
K-means clustering is an iterative technique requiring repeti-
tive identification of possible clusters to find the best set of
clusters that minimizes differences within the clusters. Such
iterative techniques require a large amount of processing

30 time because the clustering must be repeated. In the embodi-
ments described above, such iterations are no longer needed
since the transitional sub-areas x can be identified in a single
pass and the fraction functions for each sub-area x can be
identified in a single pass. Thus, the embodiments above

35 reduce the amount of processing a system must perform in
order to label satellite sensor data with land cover labels.
In addition, as shown above, the present computing

system is more accurate than existing computing systems
and thus is better able to convert satellite data into land cover

40 labels. The accurate conversion of sensor data to labels is a
highly technical function that cannot be performed by
humans because it is difficult for humans to interpret the
sensor values themselves, to covert those sensor values into
features representing wetness, and to convert the features of

45 wetness into proper labels. Furthermore, the overwhelming
amount of data involved makes it impractical or impossible
for humans to perform the functions described above. As
such, the embodiments above represent technical solutions
to technical problems.

50 An example of a computing device 10 that can be used as
a server and/or client device in the various embodiments is
shown in the block diagram of FIG. 9. For example, com-
puting device 10 may be used to perform any of the steps
described above. Computing device 10 of FIG. 9 includes a

55 processing unit (processor) 12, a system memory 14 and a
system bus 16 that couples the system memory 14 to the
processing unit 12. System memory 14 includes read only
memory (ROM) 18 and random access memory (RAM) 20.
A basic input/output system 22 (BIOS), containing the basic

6o routines that help to transfer information between elements
within the computing device 10, is stored in ROM 18.
Embodiments of the present invention can be applied in

the context of computer systems other than computing
device 10. Other appropriate computer systems include

65 handheld devices, multi-processor systems, various con-
sumer electronic devices, mainframe computers, and the
like. Those skilled in the art will also appreciate that
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embodiments can also be applied within computer systems
wherein tasks are performed by remote processing devices
that are linked through a communications network (e.g.,
communication utilizing Internet or web-based software
systems). For example, program modules may be located in
either local or remote memory storage devices or simulta-
neously in both local and remote memory storage devices.
Similarly, any storage of data associated with embodiments
of the present invention may be accomplished utilizing
either local or remote storage devices, or simultaneously
utilizing both local and remote storage devices.

Computing device 10 further includes a hard disc drive
24, a solid state memory 25, an external memory device 28,
and an optical disc drive 30. External memory device 28 can
include an external disc drive or solid state memory that may
be attached to computing device 10 through an interface
such as Universal Serial Bus interface 34, which is con-
nected to system bus 16. Optical disc drive 30 can illustra-
tively be utilized for reading data from (or writing data to)
optical media, such as a CD-ROM disc 32. Hard disc drive
24 and optical disc drive 30 are connected to the system bus
16 by a hard disc drive interface 32 and an optical disc drive
interface 36, respectively. The drives, solid state memory
and external memory devices and their associated computer-
readable media provide nonvolatile storage media for com-
puting device 10 on which computer-executable instructions
and computer-readable data structures may be stored. Other
types of media that are readable by a computer may also be
used in the exemplary operation environment.
A number of program modules may be stored in the

drives, solid state memory 25 and RAM 20, including an
operating system 38, one or more application programs 40,
other program modules 42 and program data 44. For
example, application programs 40 can include instructions
for performing any of the steps described above including
feature extractor 418, and categorizer 422. Program data can
include any data used in the steps described above including
frames of sensor values 414, frames of feature values 420,
linked graphs of sub-areas 426, fraction functions 428 and
labeled sub-areas 424.

Input devices including a keyboard 63 and a mouse 65 are
connected to system bus 16 through an Input/Output inter-
face 46 that is coupled to system bus 16. Monitor 48 is
connected to the system bus 16 through a video adapter 50
and provides graphical images to users. Other peripheral
output devices (e.g., speakers or printers) could also be
included but have not been illustrated. In accordance with
some embodiments, monitor 48 comprises a touch screen
that both displays input and provides locations on the screen
where the user is contacting the screen.
Computing device 10 may operate in a network environ-

ment utilizing connections to one or more remote comput-
ers, such as a remote computer 52. The remote computer 52
may be a server, a router, a peer device, or other common
network node. Remote computer 52 may include many or all
of the features and elements described in relation to com-
puting device 10, although only a memory storage device 54
has been illustrated in FIG. 9. The network connections
depicted in FIG. 9 include a local area network (LAN) 56
and a wide area network (WAN) 58. Such network environ-
ments are commonplace in the art.
Computing device 10 is connected to the LAN 56 through

a network interface 60. Computing device 10 is also con-
nected to WAN 58 and includes a modem 62 for establishing
communications over the WAN 58. The modem 62, which
may be internal or external, is connected to the system bus
16 via the I/O interface 46.
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In a networked environment, program modules depicted

relative to computing device 10, or portions thereof, may be
stored in the remote memory storage device 54. For
example, application programs may be stored utilizing

5 memory storage device 54. In addition, data associated with
an application program may illustratively be stored within
memory storage device 54. It will be appreciated that the
network connections shown in FIG. 9 are exemplary and
other means for establishing a communications link between

io the computers, such as a wireless interface communications
link, may be used.

Although elements have been shown or described as
separate embodiments above, portions of each embodiment
may be combined with all or part of other embodiments

15 described above.
Although the present invention has been described with

reference to preferred embodiments, workers skilled in the
art will recognize that changes may be made in form and
detail without departing from the spirit and scope of the

20 invention.
What is claimed is:
1. A method of reducing processing time when assigning

geographic areas to land cover labels using satellite sensor
values, the method comprising:

25 a processor receiving a feature value for each pixel in a
time series of frames of satellite sensor values, each
frame containing multiple pixels and each frame cov-
ering a same geographic location such that for each
sub-area of the geographic location there is a time

30 series of pixel feature values;
for each sub-area of the geographic location, assigning the

sub-area to one of at least three land cover labels;
the processor determining a fraction function for a first

sub-area assigned to a first land cover label, the fraction
35 function based on means of pixel feature values of a

first cluster of sub-areas assigned to a second land
cover label and means of feature values of a second
cluster of sub-areas assigned to a third land cover label;
and

40 reassigning sub-areas that were assigned to the first land
cover label to one of the second land cover label and the
third land cover label based on the fraction functions of
the sub-areas.

2. The method of claim 1 wherein assigning sub-areas to
45 one of at least three land cover labels comprises:

selecting a pair of neighboring sub-areas;
determining a distribution of the time-series of pixel

feature values for each sub-area in the pair of neigh-
boring sub-areas; and

50 assigning the pair of neighboring sub-areas to a same
cluster if the distributions of the pair of neighboring
sub-areas are similar to each other.

3. The method of claim 2 further comprising, for each
sub-area, determining a number of neighboring sub-areas

55 that are assigned to the same cluster as the sub-area, and if
the number is below a threshold, assigning the sub-area to
the first land cover label.

4. The method of claim 3 further comprising assigning
each sub-area in each cluster to one of the second land cover

60 label and the third land cover label by comparing the median
value of the time series of pixel feature values of the
sub-areas in the cluster to at least one threshold associated
with at least one of the second land cover label and the third
land cover label.

65 5. The method of claim 1 wherein determining a fraction
function comprises utilizing variances of pixel feature val-
ues of a first cluster of sub-areas assigned to the second land
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cover label and variances of feature values of a second
cluster of sub-areas assigned to the third land cover label.

6. The method of claim 1 further comprising:
determining a confidence score for each fraction function;
and

modifying at least one fraction function based on the
confidence score for the fraction function.

7. The method of claim 6 wherein determining a confi-
dence score for each fraction function comprises determin-
ing a probability of a mean of pixel feature values of the first
cluster of sub-areas assigned to the second land cover label
being observed in a distribution of pixel feature values for
sub-areas assigned to the third land cover label.

8. The method of claim 6 wherein modifying at least one
fraction value comprises determining a new fraction value
based on at least one past fraction value.

9. A system for more efficiently categorizing pixels in
images of a surface, the system comprising:

a memory containing features for each pixel in the
images, such that for each sub-area of a geographic
location captured by the images there is a time series of
features;

a processor performing steps of:
determining a distribution for the time series of features

for each sub-area;
forming a graph linking neighboring sub-areas;
for each pair of linked sub-areas, breaking the link

between the two sub-areas based on differences in
the distributions for the time series of features for the
two sub areas;

categorizing sub-areas with fewer than a threshold
number of links to other sub-areas as a transition
category; and

categorizing sub-areas with at least the threshold num-
ber of links as one of at least two other categories.

10. The system of claim 9 wherein categorizing sub-areas
with at least the threshold number of links as one of at least
two other categories comprises forming clusters of sub-
areas, for each cluster determining a mean feature value for
the sub-areas in the cluster, comparing the mean feature
value to a threshold and if the mean feature value is above
the threshold assigning all of the sub-areas of the cluster to
a first category of the at least two other categories and if the
mean feature value is less than the threshold assigning all of
the sub-areas of the cluster to a second category of the at
least two other categories.

11. The system of claim 10 further comprising for each
sub-area in the transition category, determining a fraction
function representing a percentage of the sub-area that is
similar to the first category of the at least two other category
at each of a plurality of times.

12. The system of claim 11 wherein determining a fraction
value for a sub-area in the transition category comprises:

identifying a cluster of sub-areas categorized in the first
category that is positioned closest to the sub-area in the
transition category and determining a separate mean of
the feature values for the identified cluster of sub-areas
in the first category at each of a plurality of times;

identifying a cluster of sub-areas categorized in the sec-
ond category that is positioned closest to the sub-area
in the transition category and determining a separate

20
mean of the feature values for the identified cluster of
sub-areas in the second category at each of the plurality
of times; and

forming the fraction function from the means of the
5 feature values for the identified cluster of sub-areas in

the first category and the means of the feature values for
the cluster of identified sub-areas in the second cat-
egory.

13. The system of claim 12 wherein forming the fraction
l0 function further comprises determining a variance for the

feature values for the identified cluster of sub-areas in the
first category and using the variance to determine the
fraction function.

15 14. The system of claim 11 wherein the processor per-
forms further steps comprising:

determining a confidence score for the fraction function;
and

modifying the fraction function based on the confidence

20 score for the fraction function.
15. The system of claim 14 wherein modifying the

fraction function comprises determining a new fraction
function based in part on at least one past fraction value.

16. A method for improving identification of land cover
25 from satellite sensor values, the method comprising:

a processor performing steps of:
receiving satellite sensor values for a collection of

sub-areas;
forming a graph linking neighboring sub-areas in the

30 collection of sub-areas;
for each pair of linked sub-areas, breaking the link

between the two sub-areas based on differences
between the satellite sensor values of the two sub

35 areas;
categorizing sub-areas with fewer than a threshold
number of links to other sub-areas as having a
transition land cover; and

categorizing sub-areas with at least the threshold num-

40 ber of links as having one of at least two other land
covers.

17. The method of claim 16 further comprising for each
sub-area categorized as having a transition land cover,
determining a fraction function that is a function of time.

45 18. The method of claim 17 wherein determining a
fraction function further comprises determining a function
that is indicative of a percentage of the sub-area having one
of the at least two other land covers at a plurality of different
times.

50 19. The method of claim 18 wherein determining a
fraction function comprises determining a mean feature
value from the sensor values for a first cluster of sub-areas
having a first land cover of the at least two other land covers
and determining a mean feature value from the sensor values

55 
for a second cluster of sub-areas having a second land cover
of the at least two other land covers.
20. The method of claim 19 further comprising determin-

ing a confidence score for the fraction function and using the
60 confidence score to alter the fraction function.
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